
Copyright © 2014 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail
permissions@acm.org.
SCCG 2014, Smolenice, Slovakia, May 28 – 30, 2014.
© 2014 ACM 978-1-4503-3070-1/14/0005 $15.00

Skeleton-based Matching for Animation Transfer and Joint Detection

Martin Madaras∗ Michal Piovarči Jana Běhal Dadová Roman Franta Tomáš Kovačovský

Comenius University Bratislava, Slovakia

Abstract

In this paper we present a new algorithm for establishing corre-
spondence between objects based on matching of extracted skele-
tons. First, a point cloud of an input model is scanned. Second, a
skeleton is extracted from the scanned point cloud. In the last step,
all the extracted skeletons are matched based on valence of vertices
and segment lengths. The matching process yields into two direct
applications - topological mapping and segment mapping. Topo-
logical mapping can be used for detection of joint positions from
multiple scans of articulated figures in different poses. Segment
mapping can be used for animation transfer and for transferring of
arbitrary surface per-vertex properties. Our approach is unique, be-
cause it is based on matching of extracted skeletons only and does
not require vertex correspondence.

CR Categories: Computer Graphics [I.3.8]: Applications

Keywords: skeleton extraction, skeleton matching, joint detection,
animation transfer

1 Introduction

A skeleton is a structure encoding topology of an object. It is useful
in many applications including animation, shape recognition or re-
trieval, surface parameterization, procedural modelling etc. There
are many algorithms for extracting skeletons from input models.
These methods differ in robustness and type of input they require.
We propose an extension for extracted skeletons based on match-
ing between two skeletons. Skeleton matching has a variety of ap-
plications in computer graphics. Having an one-to-one mapping
between sets of skeleton segments, we are able to transfer model
information as animation matrices, animation rigs or other surface
properties. We focus on two types of skeletons mappings. First one
we call topological mapping, which maps topological branches of
one skeletons onto topological branches of another skeleton. This
can be used to merge two skeletons of one model in different poses
into one union-skeleton. The union-skeleton can be further used
for detection of joints of an articulated figures. Second one we call
segment mapping, which maps each bone of one skeleton onto a
sequence of skeleton bones in the second skeleton. Applications
of segment mapping include animation transfer, transfer of surface
properties or surface cross-parameterization.

Related work to skeleton extraction, animation transfer and topo-
logical mapping is presented in Section 2. In section 3 we focus
on scanning of input models, specially point clouds of articulated
figures in different poses. A modified version of Au’s algorithm

∗e-mail: madaras@sccg.sk

[Au et al. 2008] for extraction of skeletons from point clouds is de-
scribed in Section 4. In Section 5 we propose our skeleton-based
matching with definitions of expressions used in the text. Next,
both topological and segment mapping are described and results of
detection of joints and animation transfer are presented in Section
6. A Conclusion and ideas for future work are mentioned in Sec-
tion 7. All the pseudocodes of matching algorithm can be found in
Appendix.

2 Related Work

Skeleton Extraction Numbers of algorithms have been proposed
to compute a skeleton from an input mesh geometry. In [Shapira
et al. 2008] authors proposed skeleton extraction based on a shape
diameter function (SDF). The SDF is a scalar function defined on
the mesh surface that expresses a measure of the diameter of the
object’s volume in the neighborhood of each point on the surface.
Thus, a set of random vertices is pushed in an inward normal direc-
tion into the volume of the model by a distance that equals to half
of the SDF values and a least-squares method is used to fit a high-
degree curve into the shifted points. Similar approach was used in
[Liu et al. 2003], where authors used so called repulsive force field.
Sharf et. al [Sharf et al. 2007] introduced a method that is able
to perform skeleton extraction on both, point clouds and polygonal
meshes. The method uses evolution of a deformable model inside
of the mesh. The initial extracted graph is noisy, and extraction of
final skeleton require further filtering and merging.

Reeb graph based methods need a suitable real-value function de-
fined on the model surface for a successful extraction of a skele-
ton. Using this function, nodes of a 1D graph can be computed. In
[Hilaga et al. 2001] a geodesic function was used for Reeb graph
extraction. Alternatively, a method based on a harmonic function
proposed by Aujay et. al [Aujay et al. 2007] captures after resam-
pling all the features of the model well, but requires the user to
specify the boundary condition explicitly.

Au et. al [Au et al. 2008] introduced a Laplacian smoothing based
method that works directly on the mesh geometry. The main idea
of this approach is to apply a well defined filter on mesh vertices.
In the first step, an input mesh is contracted using iterative Lapla-
cian contraction. Then, a mesh decimation is used to simplify the
contracted mesh into a curve-skeleton. Cao et. al [Cao et al. 2010]
extended the idea of Laplacian contraction [Au et al. 2008] for a
point cloud input. They used a definition of the Laplacian operator
for a point cloud in order to perform a similar weighted filtering.
When the mesh is contracted, mesh decimation cannot be used, be-
cause an edge connectivity is not defined. Authors made selection
of contracted points to be connected based on their Euclidean dis-
tance. Therefore, the ability to extract a proper skeleton depends on
the distance between samples on the manifold being smaller than
the distance between the two structures.

In [Teichmann and Teller 1998] authors extract skeleton by simpli-
fying the Voronoi skeleton with a small amount of user assistance.
Another Voronoi diagram based method [Dey and Sun 2006] com-
putes the skeleton from the medial axis obtained by extracting the
internal edges of the Voronoi diagram. These methods are quite
slow in comparison to Reeb graph or Laplacian smoothing based

91

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2643188.2643197&domain=pdf&date_stamp=2014-05-28

ones and do not guarantee that the result will capture all desired
features.

Animation Transfer Gleicher et al. [Gleicher 1998] introduced
possibility of motion retargeting between articulated figures with
same topology. This approach required many user defined con-
straints. Recent methods are more automated but use special retar-
geting to create interacting figures with each other [Ho et al. 2010]
or with the environment [Liu et al. 2010]. All of these methods
focus on mapping between figures with the same topology only.

For purpose of motion retargeting for different morphologies, a
system for animating characters whose morphologies are unknown
at the time the animation is created was developed [Hecker et al.
2008]. However, the system needs an information about the se-
mantics of the characters. Thus, deformable anatomical body parts
have to be chosen from a palette and special queries have to be
used during the animation transfer. Chang et al. uses consistent
volume parameterization [Chang et al. 2006] to transfer the ani-
mation. However, a feature points have to be set to obtain vertex
cross-correspondence.

Topological Mapping and Cross-parameterization Shape
cross-parameterization is a fundamental operation in many mesh
processing algorithms such as deformation transfer, shape blend-
ing and surface detail transfer [Sumner and Popović 2004; Praun
et al. 2001]. These methods for cross-parameterization are based
on vertex-to-vertex mapping and require solving of minimization
system for all the vertices.

Schreiner et al. [Schreiner et al. 2004] created continuous map be-
tween two arbitrary meshes. Furthermore, map distortion is min-
imized during the refinement and as a result a map that naturally
align corresponding shape elements is obtained. The method re-
quire an initial feature correspondence to be set by a user.

Fan et al. [Fan et al. 2005] introduced a morphing technique based
on polycube [Tarini et al. 2004] cross-parameterization. Polycube-
based parameterization is robust and works for meshes with arbi-
trary genus. Furthermore, they are able to build maps with singular-
ities and perform morphing between models with different genus,
however, an user-driven face matching is needed.

Some existing graph-based approach do exist for evaluation of sim-
ilarity of two graphs. A flooding algorithm [Melnik et al. 2002]
recursively computes similarity of nodes in two graphs. In [Zager
and Verghese 2008] authors derive pairwise similarity scores for the
nodes of two different graphs. However, these methods use recur-
sively computation of similarity and the computation of similarity
is based on pairwise comparison.

We are interested in topological similarity only. In our case, num-
ber of nodes of two extracted skeletons may differ. Thus, we pro-
pose two-step matching between graphs based on topological and
segment mappings. Our method is based on matching of extracted
skeletons only, therefore a calculation of vertex correspondence is
not needed. Moreover, our approach is able to obtain mapping for
models with different topology as well. In this case, only the ho-
motopic parts of the graphs are mapped and skeleton segments that
cannot be mapped are ignored.

3 Model Scanning

The complete, high resolution point-clouds of articulated figures
are obtained with our structured light optical 3D scanner SMISS
[Kovačovský 2012]. The system uses projector-camera setup to re-
construct the surface geometry of target figure using triangulation

principle. We use Gray and sinusoidal coded patterns to solve corre-
spondence problem with sub-pixel accuracy. The scanning system
also incorporates the method of High Dynamic Range scanning us-
ing projector weight maps. The intensity of projector lighting is
weighted per pixel, so that surfaces with higher reflectance receive
less illumination. This allows us to capture Higher Dynamic Range
scenes with just constant increase of scanning time for weight map
capture and computation. The scanner head is mounted on a mo-
torized arm, which allows for vertical positioning of the sensor.
The articulated figure is placed on a motorized glass table for au-
tomatic object rotation. These two axes allow us to position the
scanning head on arbitrary point of a sphere with a predefined ra-
dius with respect to a center of an object. The complete 3D cloud
is merged from partial scans from different viewpoints. The pose
of individual scans is obtained from capturing our newly designed
pose-estimation marker field of multiple circles with binary coded
positions (see Figure 1). The object is laid on our marker field and
in every scan, multiple circles of the field are localized and pose
estimation is computed from image to world space correspondence
and the known calibration parameters (world coordinates are en-
coded as two 16 bit floats), so that the partial point clouds share the
marker fields coordinate system. After all necessary partial scans
are captured, the ICP algorithm is used for more precise alignment
of individual point clouds.

Figure 1: Our setup for model scanning (SMISS).

4 Skeleton Extraction

For skeleton extraction we use a modified version of Au’s algo-
rithm [Au et al. 2008] extended to point clouds in which we use
a construction of local Delaunay’s triangulations for Laplacian es-
timation. Similar solution was presented in [Cao et al. 2010], but
the authors computed Euclidian distance between samples for con-
struction of skeleton from the contracted point cloud. Such a dis-
tance grouping yields into problems when the structures in different
skeleton branches are closer than point samples in the neighborhood
of the vertex. Therefore, to construct the final skeleton, a simplifi-
cation of a triangulation instead of Euclidian distance is used. This
triangulation is constructed in natural neighbors [Boissonnat and
Cazals 2002] manner by composition of local one-ring Delaunay’s
triangulations into the global triangulation.

A process from scanning of articulated figure in different poses to
extracted skeletons of those poses can be seen in Figure 12 enclosed
in Appendix.

4.1 Extension to Point Clouds

Given a point cloud set P consisting of n points P =
{p1,p2, . . . ,pn}, a local neighborhood Li of each vertex pi ∈ P is

92

computed. For each point pi, the closest k-neighborhood Li is cal-
culated using a kD tree. Similarly as in [Cao et al. 2010], for each
local neighborhood Li a tangent plane using PCA [Jolliffe 2002]
is computed. Then, all the points in local neighborhood are pro-
jected into the tangent plane and a local Delaunay triangulation
Di is computed. Local Delaunay triangulation is a set of edges
Di = {e1

i ,e
2
i , . . . ,e

noe(i)
i }, where noe(i) is number of edges of ith

local Delaunay triangulation. Finally a global triangulation D is
created as a composition of all the local triangulations as

D =
n⋃

i=1
{e1

i ,e
2
i , . . . ,e

noe(i)
i }. (1)

Note that the global triangulation D does not have to be 2D-
manifold. In this implementation The parameter k was experimen-
tally set k = n×0.02 and restricted to range [8..12].

For computation of Laplacian flow on the surface using cotangent
schema , a local triangulation Di is used for each point pi. Finally,
when the point cloud is contracted, a skeleton is constructed by
simplification of global triangulation D. For this simplification a
modified version of QEM simplification is used [Au et al. 2008].
An example of such a global triangulation can be seen in Figure 2.

Figure 2: An example of global triangulation D composed from
local Delaunay triangulations. As an example, one local Delaunay
triangulation is highlighted with bold black line.

5 Skeleton-based Matching

In this section a heuristics for matching of skeletons is described.
However, first definitions used in text are introduced.

5.1 Our definitions

Skeleton of an object is a rooted graph encoding the topology of
the object.

Skeleton cycle is a cycle in the skeleton graph. Each cycle is repre-
senting a topological handle in a model the skeleton was extracted
from. Skeleton can be converted into a tree by breaking all the cy-
cles. If an edge in the cycle is broken, one node is duplicated in
the same position and a special pointer referencing this duplicated
node is introduced.

Skeleton node is a node of the skeleton. The node contains an in-
formation about its 3D coordinates. If the skeleton is represented
as a tree, the node contains also information about his father, sons
and a pointer to the duplicated vertex, if the skeleton graph has con-
tained cycles before conversion to tree structure.

Skeleton segment is an edge of skeleton connecting two skeleton
nodes. Skeleton segment is also referenced as a bone in some liter-
ature.

Branch node is a skeleton node with valence higher than two. If
represented as a tree, branch node is a node that is not a root and
has more than one son, or skeleton root with more than two sons.

Skeleton path is an ordered sequence of nodes such that from each
of its nodes there is an edge to the next node in the sequence.

Topological branch is a skeleton path where the start node and the
end node are either two branch nodes, or a branch node and a node
with valence one (a leaf in tree representation).

Skeleton matching is a fitting process of two skeletons based on
valence of branch nodes and lengths of topological branches. The
input is pair of skeletons and the output of the process is sequence of
best evaluated mappings ordered from best to worst. The matching
is evaluated as a weighted sum of difference of valences of matched
branch nodes and a difference of lengths between two paths.

Skeleton topological mapping is a mapping between topological
branches of one skeleton and topological branches of second skele-
ton. A topological branch can be mapped to another topological
branch or to nothing.

Skeleton segment mapping is a mapping between segments of
one skeleton and segments of another skeleton. A segment can be
mapped to a segment, topological path or to nothing.

5.2 Matching Algorithm

We are looking for mapping from topological branch of one skele-
ton to topological branch of another skeleton. All the pseudocodes
concerning skeleton-based matching and skeleton mapping can be
found in Appendix. In the preprocessing step, for all topological
branches we collapse whole skeleton path into a single segment (see
Figure 3). By removing the connection nodes, we lose the original
information. To rectify this, we extend the edges of the input skele-
ton such that they contain data that help during the matching phase.
Currently, we store the length of the removed path and the number
of nodes that were on the path. In next phase, we are looking for
matching between two skeletons using graph representation. There-
fore, we convert skeletons to graphs with undirected edges. We use
simple backtracking to find all the possible solutions (Algorithm 2).
We impose two constraints to reduce the searching area (Algorithm
3). The first constraint is that each newly matched node from the
first skeleton must have the same neighbors as corresponding node
in the second skeleton. The second constraint is that a node can
only match onto a node with the same or higher number of neigh-
bors. Two-pass filtering is applied on the rated solutions. In the
first pass, the matching is penalized for unequal number of vertices
on the skeleton path (Algorithm 4). Solutions are then sorted from
best to worst. We pick only the solutions, which has rating within
a threshold of tolerance from the best solution. In the second pass,
we sort these solutions again with different rating which measures
Euclidean distance between matched nodes in skeletons (Step 6 in
Algorithm 1). A pseudocode of matching process is shown in Al-
gorithm 1.

Figure 3: Collapsing of topological branches into a single segment.

93

5.3 Topological Mapping

We are going to create an union-skeleton from the input set of skele-
tons (see Figure 4). We pick a skeleton with the lowest number of
vertices from the input set and match it with each other input skele-
ton using Algorithm 1. This way an intersection skeleton contained
in each of the input skeletons is found. We reorder the child nodes
of each node so that the matched child nodes are first and then the
unmatched ones. In order to create the union-skeleton we add each
matched skeleton to intersection skeleton. Next, we add the union-
skeleton to each input skeleton. In both cases the Algorithm 5 is
used and skeletons are treated as trees. We call Algorithm 5 on
skeleton roots with zero distance. After that, all skeletons have the
same topology and the degrees of freedom (DoFs) can be extracted.

Figure 4: An ilustration of topological mapping applied on two
skeletons with different topology resulting into a union-skeleton.

5.4 Segment Mapping

We match two input skeletons using Algorithm 1. When we have
the matched skeletons, we loop through all matched pairs of edges
of both skeletons. First, we reintroduce the previously collapsed
nodes into each edge. The nodes are ordered naturally along the
edge, matched parent node is the first node, matched child node
is the last node and reintroduced nodes have ascending ordered by
their distance to parent node. Next, we normalize the length of each
edge so that the distance between the first and the last node of each
edge equals to 1. This can be seen in Figure 5, blue nodes corre-
spond to skeleton which we are matching and green nodes corre-
spond to skeleton which is being matched. Smaller newly inserted
nodes are distributed along the normalized edge. Each newly in-
serted node position defines a threshold up to which all nodes from
matched skeleton correspond to it. In Figure 5 thresholds generated
by inserted nodes are marked with cyan lines along the edge. These
thresholds split the matched edge into segments. Each segment and
its nodes are then mapped onto the node that generated the segment
(see Algorithm 6).

Figure 5: Mapping of upper path node to nodes in lower path.

6 Results

Detection of joints and composition of all the skeletons (see Figure
6) into union-skeleton is based on topological mapping. Transfer of
animation including transfer of per-node transformation matrices
and per-vertex skinning data is based on segment mapping.

6.1 Detection of Joints

We merge all the matched skeleton segments into one union-
skeleton. For every union-skeleton node, we measure the change
in rotation between original skeleton pose and the matched union-
skeleton. The nodes, where rotation changes are higher than the
predefined threshold are detected as joints (see Figure 7). Finally,
a skeleton symmetry is used to detect joints in symmetrical body
parts of the model.

Figure 6: Extracted skeletons of input articulated figure in different
poses.

Figure 7: A union-skeleton is composed from all the skeletons.
Next, the nodes where the rotation changes are higher than the pre-
defined threshold are detected as joints (red nodes).

6.2 Animation Transfer

For motion retargeting, we have to fulfil one condition. The roots
of skeletons have to be in the same position relatively to model,
e.g. center of mass of the model or chest of the character. We want
to ensure that the target skeleton is more sampled than the source
skeleton. This means that for each node of source skeleton, there
has to be a node to map in the target skeleton. If this condition is
not satisfied, we iteratively subdivide the destination skeleton until
the condition is satisfied (see Figure 8).

Given mapping of bones from the source skeleton to the target
skeleton we transfer animation using quaternions for the rotation
transformation. For the transfer, source skeleton needs to have pre-
set animation using key frames and rotation quaternions. During
process of the transfer, firstly we identify these key frame poses
and respective bone rotations in source skeleton. Afterwards target
skeleton bones are set to rest rotations as they are without any ani-
mation in source skeleton. This we accomplish with target skeleton
breadth-first graph search. In each joint, we rotate target bone by an

94

Figure 8: Subdivision of skeleton. From left to right: an original ex-
tracted skeleton, skeleton after one subdivision step, skeleton after
two subdivision steps.

angle that is between the bone and mapped bone in source skeleton.
Rotation axis is cross product of these vectors to avoid rotations
around bone axis.

Secondly, when the target skeleton is aligned with the rest pose of
the source skeleton, we calculate rotations of the target skeleton for
the current pose in selected keyframe. Again we use target skele-
ton breadth-first graph search and apply rotations to the bones from
the bones of the source skeleton current pose. We set these pose
rotations for each keyframe that was set for the source skeleton an-
imation (see Figure 9).

Figure 9: Example of motion retargeting for three different poses.

Afterwards, we resolve self-penetrations of the target object.
Firstly, we identify vertex groups for the bones and calculate possi-
ble penetrations in transferred animation. We define penetration as
an intersection of an edge from one vertex group with a face from
another vertex group. Mostly we take into account only penetration
between vertex groups that are not in neighborhood of each other.
When a penetration occurs, we adjust bone rotations of intersect-
ing vertex groups for a given pose. If the result of this automated
method is not suitable for the final rendering, it is always possible to
improve it using user input. With all rotations for each key frame,
animation is successfully transferred and we use B-spline curves
with same setting as are in source animation to render final result
(see Figure 13 in Appendix).

6.3 Transfer of Information Stored in Vertices

During the animation transfer process, skinning weights have to be
transferred. If the animation skeletons of both models are reliable
[Cornea et al. 2007] a Skeleton Texture Mapping (STM) [Madaras
and Ďurikovič 2013] technique can be used. Reliability refers to the
property of the skeleton that every boundary point (point on objects
surface) is visible from at least one curve-skeleton location. In both
skeletons, each skeleton segment is used for skeleton-based param-
eterization of surrounding model surface (see Figure 10). Thus, us-
ing STM we get texture coordinates for model vertices and skinning
weights can be written into texture. In our tests, we used four skele-
ton segments to control one vertex. Therefore, skinning weights
could be stored in one texture in RGBA channels for whole model.
In case when more bones are influencing vertices, higher number of
textures have to be used. In the first step, skinning weights from the
input model are stored in STM texture. STM texture is composed

of rectangular sub-textures for each skeleton segment. Now, having
the segment mapping, we know where each sub-texture is mapped
in the STM of the second output model. Each sub-texture is linearly
stretched to fit destination dimensions and texels are copied. In a
case, when one segment is mapped onto more segments, the sub-
texture is split according to the relative length of these segments.
Vice-verse, when more segments are mapped onto one segment,
sub-textures are composed to produce one connected sub-texture.

There are two ways how to transfer the weights. The first option
is to use one STM for one bone. In this case, the STM would be a
one-channel texture describing influence of this bone over the mesh
surface. This approach is good for visualization. The second option
is to use all the four channels of texture. We assume that each node
is controlled with maximum of four bones, which is number usually
used in all real time deformation engines. Now, we are going to
have two sets of STM (see Figure 11). ST Mi is going to store all
the indices of bones controlling the vertices. Here, an conversion
from integer to float has to be performed. ST Mw is going to store all
the weights controlling the vertices. If a higher number of control
bones than four is desired, a higher number of STM has to be used
as well.

Figure 10: (Left) A reference figure with predefined skeleton and
per vertex skinning data as weights and indices. (Right) Triangula-
tion of reference figure rendered into texture using STM.

Figure 11: Extracted STM with skinning indices (left) and skinning
weights (right). Some parts of the sub-textures are black because
weight/index stored in alpha channel is high.

7 Conclusion and Future Work

We have developed the method for skeleton matching. Skeletons
are extracted from scanned point clouds. Our skeleton matching is
used for topological mapping and segment mapping of skeletons.
If the scanned model is an articulated figure, we are able to detect
the joint positions. Moreover, our system enables to transfer sur-
face and skeleton information from one model to another. This can

95

be used for animation transfer from predefined motion to scanned
figure.

Our animation transfer system has some limitations we would like
to face in the future work. The main limitation is that both mod-
els have to be approximately in the same pose. Mostly in ani-
mation transfer applications a bind pose is used. However, it is
able to transfer the animation from different pose, but self-collision
tests have to be performed or maximal angles in joints have to be
checked. Another limitation is that for transferring of skinning
per-vertex data, both animation skeletons have to be reliable so
skeleton-based parameterization can be used. If at least one of the
skeletons is not reliable, the skinning weights have to be set man-
ually or using animation software package. Therefore, in the fu-
ture work we would like to focus on converting an input animation
skeleton into an animation skeleton which satisfies the reliability
condition and produces the same animation.

References

AU, O. K.-C., TAI, C.-L., CHU, H.-K., COHEN-OR, D., AND
LEE, T.-Y. 2008. Skeleton extraction by mesh contraction. In
ACM SIGGRAPH 2008 papers, 1–10.

AUJAY, G., HÉTROY, F., LAZARUS, F., AND DEPRAZ, C. 2007.
Harmonic skeleton for realistic character animation. In Proceed-
ings of the 2007 ACM SIGGRAPH, 151–160.

BOISSONNAT, J.-D., AND CAZALS, F. 2002. Smooth surface re-
construction via natural neighbour interpolation of distance func-
tions. Comput. Geom. Theory Appl. 22, 1-3 (May), 185–203.

CAO, J., TAGLIASACCHI, A., OLSON, M., ZHANG, H., AND SU,
Z. 2010. Point cloud skeletons via laplacian based contraction.
In Proceedings of the 2010 SMI Conf., 187–197.

CHANG, Y.-T., CHEN, B.-Y., LUO, W.-C., AND HUANG, J.-B.
2006. Skeleton-driven animation transfer based on consistent
volume parameterization. In Proceedings of the 24th Interna-
tional Conference on Advances in Computer Graphics, Springer-
Verlag, Berlin, Heidelberg, CGI’06, 78–89.

CORNEA, N. D., SILVER, D., AND MIN, P. 2007. Curve-skeleton
properties, applications, and algorithms. IEEE Transactions on
Visualization and Computer Graphics 13, 3, 530–548.

DEY, T. K., AND SUN, J. 2006. Defining and computing curve-
skeletons with medial geodesic function. In Proceedings of the
4th EG symposium on Geom. processing, 143–152.

FAN, Z., JIN, X., FENG, J., AND SUN, H. 2005. Mesh mor-
phing using polycube-based cross-parameterization: Animating
geometrical models. Comput. Animat. Virtual Worlds 16 (July),
499–508.

GLEICHER, M. 1998. Retargetting motion to new characters. In
Proceedings of the 25th annual conference on Computer graph-
ics and interactive techniques, ACM, New York, NY, USA, SIG-
GRAPH ’98, 33–42.

HECKER, C., RAABE, B., ENSLOW, R. W., DEWEESE, J., MAY-
NARD, J., AND VAN PROOIJEN, K. 2008. Real-time motion
retargeting to highly varied user-created morphologies. In Pro-
ceedings of ACM SIGGRAPH ’08. http://chrishecker.com/Real-
timeMotionRetargetingtoH ighlyV ariedU ser −
CreatedMorphologies.

HILAGA, M., SHINAGAWA, Y., KOHMURA, T., AND KUNII, T. L.
2001. Topology matching for fully automatic similarity estima-
tion of 3d shapes. In Proceedings of the 28th annual conference
on Computer graphics and interactive techniques, ACM, New
York, NY, USA, SIGGRAPH ’01, 203–212.

HO, E. S. L., KOMURA, T., AND TAI, C.-L. 2010. Spatial re-
lationship preserving character motion adaptation. ACM Trans.
Graph. 29, 4 (July), 33:1–33:8.

JOLLIFFE, I. 2002. Principal Component Analysis. Springer Series
in Statistics. Springer.

KOVAČOVSKÝ, T. 2012. Scalable multifunctional indoor scanning
system. In Bulletin of the ACM Slovakia, 47–48.

LIU, P.-C., WU, F.-C., MA, W.-C., LIANG, R.-H., AND OUHY-
OUNG, M. 2003. Automatic animation skeleton construction
using repulsive force field. In Proceedings of the 11th Pacific
Conference on CG and Applications, 409–413.

LIU, L., YIN, K., VAN DE PANNE, M., SHAO, T., AND XU, W.
2010. Sampling-based contact-rich motion control. ACM Trans.
Graph. 29, 4 (July), 128:1–128:10.

MADARAS, M., AND ĎURIKOVIČ, R. 2013. Skeleton texture map-
ping. In Proceedings of the 28th Spring Conference on Computer
Graphics, ACM, New York, NY, USA, SCCG ’12, 121–127.

MELNIK, S., GARCIA-MOLINA, H., AND RAHM, E. 2002. Sim-
ilarity flooding: A versatile graph matching algorithm and its
application to schema matching. In Proceedings of the 18th In-
ternational Conference on Data Engineering, IEEE Computer
Society, Washington, DC, USA, ICDE ’02.

PRAUN, E., SWELDENS, W., AND SCHRÖDER, P. 2001. Consis-
tent mesh parameterizations. In Proceedings of the 28th annual
conference on Computer graphics and interactive techniques,
ACM, New York, NY, USA, SIGGRAPH ’01, 179–184.

SCHREINER, J., ASIRVATHAM, A., PRAUN, E., AND HOPPE, H.
2004. Inter-surface mapping. ACM Trans. Graph. 23 (Aug.),
870–877.

SHAPIRA, L., SHAMIR, A., AND COHEN-OR, D. 2008. Consis-
tent mesh partitioning and skeletonisation using the shape diam-
eter function. Vis. Comput. 24 (March), 249–259.

SHARF, A., LEWINER, T., SHAMIR, A., AND KOBBELT, L. 2007.
On-the-fly curve-skeleton computation for 3D shapes. Computer
Graphics Forum, (Proceedings Eurographics 2007) 26, 3, 323–
328.

SUMNER, R. W., AND POPOVIĆ, J. 2004. Deformation transfer
for triangle meshes. ACM Trans. Graph. 23 (Aug.), 399–405.

TARINI, M., HORMANN, K., CIGNONI, P., AND MONTANI, C.
2004. Polycube-maps. In In Proceedings of SIGGRAPH 2004,
853–860.

TEICHMANN, M., AND TELLER, S. 1998. Assisted articulation of
closed polygonal models. In SIGGRAPH ’98: ACM SIGGRAPH
98 Conference abstracts and applications, ACM, New York, NY,
USA, 254.

ZAGER, L. A., AND VERGHESE, G. C. 2008. Graph similarity
scoring and matching. Applied Mathematics Letters 21, 1, 86 –
94.

96

Appendix

Algorithm 1 MatchSkeletons
Require: S1← InputSkeleton1
Require: S2← InputSkeleton2

1: S′1, f ormerNodes1←Collapse(S1)
2: S′2, f ormerNodes2←Collapse(S2)
3: A← Skeleton2Graph(S′1, f ormerNodes1)
4: B← Skeleton2Graph(S′2, f ormerNodes2)
5: matches←MatchGraphs(A,B)
6: matches← GeometrySort(matches)
7: return matches. f irst()

Algorithm 2 MatchGraphs
Require: A← InputGraph1
Require: B← InputGraph2
Require: match← InputMatch

if match.size() == A.nodes.size() then
Evaluate(A,B,match)

else
for each node in B.nodes do

if CanMatch(B,A.nodes[match.size()],node,match) then
match← match∪node
MatchGraphs(A,B,match)
match← match\node

end if
end for

end if

Algorithm 3 CanMatch
Require: B← InputGraph2
Require: nodeA← InputNodeFromA
Require: nodeB← InputNodeFromB
Require: match← InputMatch

if AlreadyMatched(nodeB,match) then
return false

end if
if nodeA.neighbors.size()> nodeB.neighbors.size() then

return false
end if
for each node in nodeA.neighbors do

matched← match[node]
if matched 6=−1 then

if not AreNeighbors(B.nodes[matched],nodeB) then
return false

end if
end if

end for
return true

Algorithm 4 Evaluate
Require: A← InputGraph1
Require: B← InputGraph2
Require: match← InputMatch

error← 0
for each node in A.nodes do

if not Matched(node,match) then
error← error+node. f ormerNodes

else
nodeB← B.nodes[match[node]]
di f f ← abs(nodeB. f ormerNodes−node. f ormerNodes)
error← error+di f f

end if
end for
InsertAscending(match,error,matches)

Algorithm 5 AddSkeleton
Require: dstNode← InputNode1
Require: srcNode← InputNode2
Require: srcDist← InputDistO f Node1
Require: dstDist← InputDistO f Node2

if srcNode = NULL then
return

end if
if dstNode = NULL then

InsertToSkeleton(srcNode)
end if
if abs(srcDist−dstDist)< threshold then

dstNode.matched← dstNode.matched +1
for each nodeA,nodeB in dstNode.nodes,srcNode.nodes do

dA← nodeA.parentDist
dB← nodeB.parentDist
AddSkeleton(nodeA,dA,nodeB,dB)

end for
end if
if dstDist < srcDist then

node← dstNode.nodes[0]
srcDist← srcDist−dstDist
AddSkeleton(node,node.parentDist,srcNode,srcDist)

end if
if srcDist < dstDist then

InsertToSkeleton(srcNode)
node← srcNode.nodes[0]
dstDist← dstDist− srcDist
AddSkeleton(dstNode,dstDist,node,node.parentDist)

end if

Algorithm 6 MapSegments
Require: sources← InputDestOrderedPairs
Require: dests← InputSourceOrderedPairs
Require: map← InputMapping
Require: threshold← InputT hreshold

source← sources. f irst()
for each dest in dests do

if dest.dist ≤ source.dist + threshold then
map[source]← map[source]∪dest

else
source← source.next()

end if
end for

97

Figure 12: From left to right: scanning of an articulated figure, input point clouds, contracted point cloud using Laplacian smoothing,
extracted skeletons.

Figure 13: Animation transfer from reference motion to scanned figure.

98

