
EUROGRAPHICS 2023 / K. Myszkowski and M. Nießner
(Guest Editors)

COMPUTER GRAPHICS forum
Volume 42 (2023), Number 2

Directionality-Aware Design of Embroidery Patterns

Liu Zhenyuan1,2 , Michal Piovarc̆i1 , Christian Hafner1, Raphaël Charrondière1, Bernd Bickel1

1ISTA, Austria 2EPFL, Switzerland

Figure 1: Close-ups of embroidery patterns generated using our method stitched on ivory cloth; see Figure 14 for full images.

Abstract
Embroidery is a long-standing and high-quality approach to making logos and images on textiles. Nowadays, it can also be
performed via automated machines that weave threads with high spatial accuracy. A characteristic feature of the appearance
of the threads is a high degree of anisotropy. The anisotropic behavior is caused by depositing thin but long strings of thread.
As a result, the stitched patterns convey both color and direction. Artists leverage this anisotropic behavior to enhance pure
color images with textures, illusions of motion, or depth cues. However, designing colorful embroidery patterns with prescribed
directionality is a challenging task, one usually requiring an expert designer. In this work, we propose an interactive algorithm
that generates machine-fabricable embroidery patterns from multi-chromatic images equipped with user-specified directionality
fields. We cast the problem of finding a stitching pattern into vector theory. To find a suitable stitching pattern, we extract sources
and sinks from the divergence field of the vector field extracted from the input and use them to trace streamlines. We further
optimize the streamlines to guarantee a smooth and connected stitching pattern. The generated patterns approximate the color
distribution constrained by the directionality field. To allow for further artistic control, the trade-off between color match and
directionality match can be interactively explored via an intuitive slider. We showcase our approach by fabricating several
embroidery paths.

CCS Concepts
• Computing methodologies → Shape modeling;

© 2023 The Authors. Computer Graphics Forum published by Eurographics - The European Asso-
ciation for Computer Graphics and John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

https://orcid.org/0000-0001-9200-5690
https://orcid.org/0000-0002-5062-4474
https://orcid.org/0000-0001-6511-9385

Liu Zhenyuan et al. / Directionality-Aware Design of Embroidery Patterns

1. Introduction

The embroidery machine is one of the oldest fully automated de-
vices, starting from designs punched on paper tapes and continuing
in modern times with numerically controlled machines featuring
several stitching heads. To create the desired appearance, embroi-
dery machines weave colored threads into a cloth substrate. This
process is governed by strict hardware constraints, such as a min-
imal stitch length, and connectedness of adjacent stitches to form
stitch lines. Because of these constraints, the fabrication process
generates a characteristic anisotropic appearance [GLL∗21] with a
limited design space. By trial and error, artists have learned to navi-
gate this design space and leverage the anisotropy to create various
effects. For example, horizontal and vertical directions are used to
convey depth, diagonal lines convey movement and a sense of en-
ergy, and curved lines evoke emotions while softening edges. For
more embroidery practices in real life, we refer the readers to a
book [Nee18] that covers many of the aspects of this traditional
handcraft technique.

Despite the importance of thread directionality, commercial em-
broidery software [Ber21] offers only limited control options, for
example, a set of pre-programmed parametric designs. Alterna-
tively, it hides the anisotropy while partitioning via color quantiza-
tion and filling partitions with randomized stitches; see Figure 11.
As a result, reproducing features such as a flowing river requires
the manual generation of several regions that approximate the river
flow.

One of the key reasons why only limited control over anisotropy
is provided is the challenging interaction between spatially varying
directionality and thread density. When generating a curve network
following a direction field at a given density, it is impossible to
satisfy both requirements exactly. Despite the availability of algo-
rithms for the generation of these so-called stripe patterns, none
satisfy the unique demands for generating stitching paths and pro-
viding enough artistic control. We propose a new algorithm for gen-
erating a stitching path, based on sampling the spawning points and
terminal points of curve segments that are guaranteed to yield a dis-
tribution with the correct average directionality and density. In the
next step, we include the designer in the loop to strike an aesthetic
balance between faithfully reproducing directionality and density
also on a local level.

The entire pipeline of our interactive algorithm for the genera-
tion of embroidery patterns with desired directionality is illustrated
in Figure 2. Our input is a multichromatic image representing the
density of individual colors and a direction field (Figure 2, Input).
The first step, and one of our technical contributions, is the gener-
ation of sources and sinks in the interior and on the boundary of a
colored region (Figure 2, Sources). The distribution of these points
is guaranteed to be such that the streamlines (Figure 2, Stream-
lines) traced through the direction field from sources to sinks will
reproduce the density given by the colors of the input. To explicitly
address the trade-off between adhering to the density and direc-
tion field, we introduce an interactive regularization step (Figure 2,
Regularization), in which the artist can explore different options,
as illustrated in Figure 7. Finally, we postprocess the set of stream-
lines to yield one continuous path and fabricate it on an embroidery
machine (Figure 2, Fabrication).

To demonstrate the usefulness of our approach, we created a de-
sign interface that facilitates the conversion of images into colored
regions with a direction field and, ultimately, into a stitching path.
We showcase the results of our design pipeline by fabricating sev-
eral automatically generated stitching patterns.

2. Related Work

Embroidery modeling is a long-standing problem in computer
graphics, and one of its important aspects is the intricate anisotropic
appearance of embroidered threads. For embroidery visualization,
there is work that proposes modeling the thread as a bundle of elon-
gated cylinders [CMKM12]. The cylinders can be further refined to
incorporate the bending of a thread as it enters and leaves the fab-
ric [GLL∗21]. The resulting visualizations yield a faithful repre-
sentation of the final stitched designs [YSMY16,MS21]. The visu-
alization can be enhanced to automatically convert input images to
stitch representation where stitches are parametrized by their start-
ing and ending locations [CSZ17,QXC∗19,QCX∗20]. Even though
these methods can produce images in a realistic embroidery style,
their final design tends to contain many disconnected stitches, mak-
ing it hard to be directly sewed on an embroidery machine.

Fabrication constraints are a key factor in the successful de-
sign of embroidery patterns. To guarantee stitchable patterns, com-
mercial software [Ber21] only provides a restricted set of prede-
fined parametric patterns, from which the user can choose. This
paradigm was extended to semi-automatically convert an input im-
age into a set of regions with user-selected textures [GLL∗21]. An
alternative to manual pattern selection is the automatic conversion
of images to embroidery designs. These automatic tools mask the
anisotropy of the threaded designs by generating patterns with ran-
domized stitch directions. However, this randomization does not
exploit the full capabilities of the hardware to use the thread di-
rection for texturing. Thus, researchers investigated how to convert
input images into designs suitable for continuous line-drawing sys-
tems [KLC07, WT13, LM14, CPG15]. [LHM17] proposed a fully
automatic method for generating quilt path from images, with the
path constrained being a single loop and aggregating the edge in-
formation extracted from the image. Our proposed method is for
generating fabricable embroidery designs from images, and the key
difference is that we aim to produce colored infills. Therefore, our
technique can be seen as a complimentary, where the main color in-
formation could be manufactured using our method, and then, the
edges could be enhanced with the method proposed by [LHM17].

Non-photorealistic rendering researchers have also investigated
the problem of generating images that are composed of strokes
with a prescribed density and/or directionality. Automated meth-
ods were designed for various painting techniques, including pen-
cil drawings [LXJ12], inks [Ahm14], and oil paintings [HFL11].
Another interesting technique is hatching, where shades are re-
produced by tightly spacing parallel lines [WS94, ZISS04, KSZ18,
LFH∗19]. However, these techniques are tightly tied to the paint-
ing method of choice and, as a result, cannot be readily applied to
embroidery, where many of the original assumptions, such as color
blending, are violated.

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

Liu Zhenyuan et al. / Directionality-Aware Design of Embroidery Patterns

SourcesInput FabricationStreamlines Regularization

Figure 2: Our method takes as input a density and a direction field, extracted from an image and user input direction (blue arrows). We
sample the sources (blue dots) and sinks (orange dots) according to the divergence field of the combination of density and direction field.
Then, we trace and trim streamlines from the sources and sinks. Next, we run a regularization step to promote even spacing between the
streamlines. Finally, with postprocessing, a single connected path is constructed and embroidered by a programmable embroidery machine.

Another option to reproduce the desired density is to generate
continuous lines passing through key image features. This typically
involves first generating a set of points that approximate the desired
image either manually or via stippling techniques [Sec02]. These
points can then be treated as a graph, and connecting lines can
be generated by solving a traveling salesman problem, or a min-
imal spanning tree [Ahm15]. The edges of the graph can be further
weighted to produce more aesthetically pleasing results [IU09]. Al-
though these methods can capture the density information well, the
directionality is often neglected. In contrast, we seek to design a
pattern that respects user-supplied density and directionality fields.

Visualization techniques for prescribed density and directionality
fields are another option to reproduce an image [TB96]. The tech-
niques are either based on tracing the streamlines directly [JL97,
MAD05, LS20] or through a generative noise function [LH06,
LLD10]. The image-based methods can be further extended to trace
the streamlines on meshes [CDS10, SLCZ09, KCPS13] or utilize
curve-based [TWY∗20] or image-based [HWYZ20] primitives. For
a more detailed overview of these techniques please see [DGK07].
Recently, [BCOM∗22] proposed a method to generate infills of a
constant density while providing control over anisotropy via a di-
rectionality field. In contrast, we aim to control both the density
and directionality based on user-supplied input.

Two promising techniques for the generation of stripe patterns
are those proposed in [KCPS15] and [TEZ∗19, TTZ∗20]. The for-
mer does not have fabrication as a goal, but yields excellent results
for inputs in which the gradient of the density field aligns with the
direction field. The latter leverages parametric noise functions to
generate images with a prescribed density and directionality. We
compare these two methods to ours in Figure 10 and find that our
results are more regular and contain fewer artifacts in regions with a
changing density. Furthermore, our method provides a higher level
of user control by allowing users to interactively explore a range of
designs with an intuitive slider.

3. Design of Embroidery Patterns

The design space of sewable embroidery is constrained by hard-
ware limitations. The machine has access to a limited selection of
threads and can typically load only up to 10 colors. Moreover, the
thread-cutting function is slow and unreliable, often leaving strands
that require manual cleaning. Therefore, each color in the design
should be carefully considered to avoid unnecessary thread swap-
ping or cutting. We reflect these constraints in our method.

Our pipeline takes as input a simply connected domain Ω⊂ R2,
a density function α : Ω→ R>0, and an analytical or user-supplied
unit vector field v : Ω→ S1 ⊂R2, both of which are assumed to be
at least weakly differentiable. The goal of our algorithm is to find
a continuous space-filling curve γ : (0, ℓ)→ Ω that approximates
α and v in the following sense: First, the direction of γ(s) should
follow the vector field v(γ(s)), or the opposite direction −v(γ(s))
everywhere. Second, the distance between neighboring segments
of γ that run parallel (or anti-parallel) to each other should be ap-
proximately equal to the reciprocal of the density, 1/α. In the end,
γ is converted to a fabricable stitching part. We break down the
generation of γ into three steps:

1. Even though the final goal is to produce one continuous curve,
we start out by generating a set of streamlines that cover Ω. Each
streamline is traced from a source point to a sink point. The first
step is to sample these sources and sinks at suitable locations.

2. After tracing the streamlines, they are post-processed to improve
the approximation of the direction and density fields.

3. We add connecting segments between neighboring streamlines
to form a spanning tree. In a final step, we generate a stitching
path γ that traverses the tree in depth-first order, thereby dou-
bling all edges of the tree.

The following subsections elaborate on each step and give the al-
gorithmic details.

3.1. Distribution of Sources and Sinks

Our first goal is to trace a set of streamline segments through the
vector field v : Ω → S1, such that two neighboring streamlines

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

Liu Zhenyuan et al. / Directionality-Aware Design of Embroidery Patterns

are approximately 1/α apart. It is intuitive that more streamlines
are needed in high-density regions, and fewer streamlines in low-
density regions, so we need to spawn or terminate streamlines as
needed. We do this by sampling a set of sources and sinks, which
mark the locations where streamlines begin and end, respectively.
Here, we argue that the distribution of sources and sinks is inher-
ently related to the divergence of the vector field formed by the
product of α and v.

∂ω1

∂ω2

∂ω3

∂ω4

1
α1

1
α1

1
α3

1
α3

1
α3

Figure 3: Streamtube ω is formed by two curves ∂ω1,∂ω3 that
are orthogonal to v (light blue arrows in the background), and
∂ω2,∂ω4 that are tangent to v. The number of sources (5 blue dots),
sinks (4 orange points), streamlines across ∂ω1 (3 entering on the
left), and streamlines across ∂ω3 (4 exiting on the right) satisfy
Equation (1).

Let this vector field be denoted by Z(p) := α(p)v(p). To illus-
trate the connection between sources/sinks and ∇ ·Z, consider a
subdomain ω⊂Ω shaped like the one in Figure 3, sometimes called
a streamtube of v. The boundary ∂ω is formed by four smooth
curves ∂ωi, i = 1, . . . ,4, such that ∂ω1 and ∂ω3 are orthogonal to v,
and ∂ω2 and ∂ω4 tangent to v. Next, assume that we are given a set
of streamline segments that satisfy the density requirement of being
1/α apart. Because this holds also at the boundary, we observe:∫

∂ω1

α = ᾱ1 · length(∂ω1) = #streamlines across ∂ω1,

where ᾱ1 denotes the average of α on ∂ω1. The last equality holds
since each streamline takes a width of 1/α. Similarly, the integral
of α over ∂ω3 gives the number of streamlines crossing ∂ω3.

Now we can establish the relationship between sources/sinks and
Z, using the divergence theorem in the first step:∫

ω

∇·Z =
∫

∂ω

αn ·v =
∫

∂ω3

α−
∫

∂ω1

α (1)

= #streamlines across ∂ω3−#streamlines across ∂ω1

= #sources−#sinks,

where n stands for the outward-pointing normal along ∂ω. The
last equality holds because the difference between the number of
streamlines exiting (across ∂ω3) and entering (across ∂ω1) must be
equal to the difference between the number of streamlines starting
and terminating in ω; see Figure 3 for an example.

This argument can be extended to arbitrary subregions of Ω, be-
cause any subregion can be approximated by a union of stream-

tubes. Thus, we find the following general rule: The difference be-
tween the number of sources and sinks in any subregion of Ω must
be equal to the integral of the divergence over that subregion.

Naturally, we can only follow this rule approximately, because
there is a finite number of sources and sinks. Therefore, we cannot
reproduce

∫
ω
∇·Z exactly for arbitrary ω ⊂ Ω. We resolve this is-

sue by relaxing the problem: find a finite partition ω1, . . . ,ωn of Ω,
such that Equation (1) holds exactly for any ω that can be repre-
sented as an arbitrary union of these ωi—see the rectangular parti-
tion in Figure 4 for an example. For other subregions at a similar
resolution, Equation (1) will only hold approximately.

Ω

Figure 4: We leverage a k-d tree to partition the domain Ω into
many regions, of which each has the function w integrated to 1. The
background color encodes the weight function w; a darker color
indicates a larger value of w. A source (orange) is placed at the
center of mass of each region.

Placing sources in negative-divergence regions causes the
streamlines to spawn where density should decrease, creating vi-
sual artifacts. Also, these streamlines need to be terminated quickly
to correct the error, resulting in very short segments. To avoid this,
we partition Ω into Ω

+ := {p∈Ω :∇·Z(p)> 0} and Ω
− := {p∈

Ω :∇·Z(p)< 0} and perform the sampling of sources only in Ω
+

and of sinks only in Ω
− independently of each other.

3.2. Sampling Sources and Sinks

Sampling points according to a prescribed density field is a long-
standing computer graphics problem [LWSF10, MARI17], and
there are algorithms that can be used to approximate the input den-
sity. However, since our aim is not to visually match a density field
but rather to solve Equation (1), we would like the sampling to
provide additional guarantees: (1) generate the exact number of
sources and sinks as needed; (2) the sources and sinks match posi-
tive and negative divergence as closely as possible, and (3) have a
fast runtime. In this subsection, we provide a sampling algorithm
specifically tailored to solve Equation (1).

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

Liu Zhenyuan et al. / Directionality-Aware Design of Embroidery Patterns

Here we describe our algorithm for sampling sources in Ω
+,

with special treatment for the boundary ∂Ω∩Ω
+. The algorithm for

sampling sinks in Ω
− works the same way, except that all appear-

ances of Ω
+ need to be replaced by Ω

−, and of ∇·Z by −∇·Z.
After these steps, we end up with four point sets: sources Sint in
the interior of Ω

+ and Sbdry on the boundary ∂Ω∩Ω
+, as well as

sinks Tint in the interior of Ω
− and Tbdry on the boundary ∂Ω∩Ω

−;
please see Figure 5 for instances of each point set. Also note that
these four sets are sampled independently.

(a) (b)
(c)

(d)

Figure 5: Sources and sinks sampled on the boundary and in the
interior. Instances of Sbdry,Tbdry,Sint ,and Tint are shown in (a) –
(d), respectively.

Sources in the interior. First, we describe the algorithm for gen-
erating Sint. As mentioned, we do not sample sinks in Ω

+; then, by
Equation (1), we see that the integral

∫
Ω+∇·Z must equal the total

number of sources. However, the number of sources is an integer,
whereas the integral term is most likely not. The smallest modifica-
tion we can make is to scale the input signal Z, such that the integral
becomes an integer. We do so by having Z̃ =

⌈
∫

Ω+∇·Z⌉∫
Ω+∇·Z Z. The scal-

ing factor usually is close to 1 for a realistic input, because for most
of the input we need to generate many sources. After this scaling,
n :=

∫
Ω+∇· Z̃ gives the number of sources we need to distribute.

We distribute n sources by partitioning Ω
+ into ω1, . . . ,ωn such

that
∫

ωi
∇· Z̃ = 1 for all i = 1, . . . ,n, and place one source per ωi.

As a heuristic, we place the source point si ∈Ω
+ at the location of

concentrated divergence, i.e., the center of mass of∇· Z̃ on ωi:

si =

∫
ωi
(∇· Z̃(p))pdp∫

ωi
∇· Z̃

.

This guarantees that integrating∇· Z̃ over Ω
+ gives approximately

the same result as counting the number of sources.

To construct the partition, we take the axis-aligned bounding box
B+ of Ω

+, and define w : B+→ R≥0 by

w(p) :=

{
∇· Z̃(p) if p ∈Ω

+,

0 otherwise.

The idea is to compute a k-d tree decomposition of B+ such that w
integrates exactly to 1 on each leaf cell. Our procedure for doing
this is shown in Algorithm 1, but we need to verify that Step 6,
which subdivides a cell, is always possible.

To show this, consider a rectangle Ω = [x1,x2]× [y1,y2] with∫
Ω

w = m. Then, we can define f (x) :=
∫
[x1,x]×[y1,y2]

w, which in-
tegrates w on a subrectangle of Ω and satisfies f (x1) = 0 and
f (x2) = m. From the intermediate value theorem and continuity of
f , it follows that there exists x∗ ∈ (x1,x2) such that f (x∗) = ⌊m/2⌋.
This shows that x∗ marks the location of a vertical line that subdi-
vides Ω in the way required by Algorithm 1. In practice, we subdi-
vide along a vertical line if x2− x1 > y2− y1, and along a horizon-
tal line otherwise. Algorithmically, we find x∗ (or y∗) using binary
search. The final partition ω1, . . . ,ωn is given by intersecting every
rectangular region at a leaf of the k-d tree with Ω

+.

Algorithm 1 FINDSOURCESINREGION(Ω, w)→ Sint

1: m←
∫∫

Ω
wdA ▷ Integrate over a 2D region

2: if m = 1 then
3: Sint←{

∫∫
Ω

w(p)p dp/
∫∫

Ω
wdA} ▷ Center of mass

4: else if m > 1 then
5: n← ⌊m/2⌋
6: Partition Ω into Ω1,Ω2 such that

∫∫
Ω1

wdA = n
7: S1← FINDSOURCESINREGION(Ω1,w)
8: S2← FINDSOURCESINREGION(Ω2,w)
9: Sint← S1∪S2

10: end if

Sources on the boundary. To generate the set of sources Sbdry
on the boundary portion Γ

+ := ∂Ω∩Ω
+, we can employ a strat-

egy very similar to that of the interior, and subdivide the boundary
based on a particular density function analogous to∇·Z. To derive
this density function, we view the boundary as part of the signal
Z by defining a function extension Z̄(p) := Z(p) for p ∈ Ω

+, and
Z̄(p) = 0 for p /∈Ω

+.

This extended signal Z̄ has a discontinuity along Γ
+, but we can

write down its divergence as a distribution:

∇· Z̄(p) =

∇·Z(p) if p ∈Ω

+ \∂Ω,

n(p) ·Z(p)δ(p) if p ∈ Γ
+,

0 otherwise,

where δ denotes the Dirac distribution on Γ
+. The term n ·Z is

part of the divergence which is concentrated at Γ
+, and we sample

sources from it. Following the same reasoning as before, we scale
Z to be Z̃ := ⌈

∫
Γ+ n·Z⌉∫
Γ+ n·Z Z. Then we will distribute the sources as

per the integral of term u := n · Z̃ using Algorithm 2, which is the
one-dimensional equivalent of Algorithm 1. The main difference
is that during the partitioning step, which is Step 6, we subdivide
a curve into two parts instead of a rectangle. The argument why
this is always possible follows—as before—from the intermediate
value theorem, used on an antiderivative of u along Γ

+.

3.3. Tracing and Trimming

Our sampling of sources and sinks guarantees that the streamlines
will be generated at the correct average density, given by α. How-
ever, since source and sink generation are independent, a stream-
line traced from a source is not guaranteed to flow directly into a
sink. A greedy approach, such as assigning every sink to the closest
streamline, will fail in general, as illustrated in Figure 6.

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

Liu Zhenyuan et al. / Directionality-Aware Design of Embroidery Patterns

Algorithm 2 FINDSOURCESONCURVE(Γ, u)→ Sbdry

1: m←
∫

Γ
uds

2: if m = 1 then
3: Sbdry←{

∫
Γ

u(p)pds/
∫

Γ
uds} ▷ Center of mass

4: else if m > 1 then
5: n← ⌊m/2⌋
6: Partition Γ into Γ1,Γ2 such that

∫
Γ1

uds = n
7: S1← FINDSOURCESONCURVE(Γ1,u)
8: S2← FINDSOURCESONCURVE(Γ2,u)
9: Sbdry← S1∪S2

10: end if

Figure 6: We intend to ensure that each streamline pairs with one
sink. The greedy approach that always assigns the sink to the clos-
est streamline might violate our intention because of an improper
order of processing the sinks, whereas solving a weighted assign-
ment problem guarantees that the constraint is satisfied.

To resolve this ambiguity, we propose the following approach.
First, we trace a streamline from every source to the boundary, us-
ing the method advocated by [TB96] with a second-order Runge-
Kutta integrator. To make sure that every sink trims exactly one
streamline while choosing streamlines and sinks close to each
other, we formulate an assignment problem. The cost associated
with assigning a streamline to a sink is given by the shortest dis-
tance between them. Thus, a low cost is associated with streamlines
that run very close to a sink. The goal is to find an assignment that
minimizes the total cost, i.e., the sum of all shortest distances be-
tween the sink-streamline pairs. The globally optimal solution can
be found via a linear program [Cro16].

After the optimal assignment is found, each streamline is
trimmed at the point closest to its assigned sink. This results in
a set of streamline segments with the correct average density, as
illustrated in Figure 2 (center). The next step is to improve the den-
sity also locally and to achieve a uniform spacing of 1/α between
neighboring streamline segments.

3.4. Density vs. Directionality

There is a trade-off between locally im-
proving streamline density and keeping the
streamlines aligned with the direction field.
The inset (horizontal direction field) illus-
trates why: Whenever a new streamline
emerges from a source, this creates a sudden
jump in density at this point. To correct for

this jump, the two neighboring streamlines have to flow “around”
the new streamline, as shown in the inset figure, which worsens the
alignment with the direction field in turn.

The four panels in Figure 7 show different trade-offs between a
faithful reproduction of density and directionality. Since the choice
between them is purely artistic, we leave it up to the user by ex-
posing a slider that controls the relative weights of a density and a
directionality objective.

Notation. We formulate the problem of regularizing the stream-
lines as a quadratic optimization problem. The optimization vari-
ables are the vertex positions of the streamlines, which are repre-
sented as discrete curves. We denote the position of the i-th vertex
of the k-th streamline by pk

i , and set ek
i := pk

i+1− pk
i . The initial

position of a vertex (before optimization) is denoted by p̄k
i , and

analogously, ēk
i := p̄k

i+1− p̄k
i . Furthermore, we set n̄k

i to be a unit
vector orthogonal to ēk

i .

Energy. In total, we introduce four energy terms: a direction
term that penalizes the deviation of streamline edges from their
original direction; a density term that penalizes two neighboring
streamlines if their distance deviates from the ideal distance 1/α;
and two regularization terms.

The directionality term runs over all streamline edges,

Edir = ∑
k,i
(ek

i · n̄k
i)

2,

and penalizes deviations of the edge from being orthogonal to the
normal. The energy of each edge is implicitly scaled by the length
of ek

i , so long edges incur a greater penalty.

The density term involves the distance between vertices of
neighboring streamlines. To identify pairs of such vertices, we com-
pute a Delaunay triangulation on the vertices p̄k

i , constrained to
contain all streamlines edges, as shown in Figure 8. The additional
edges present in the Delaunay triangulation will connect vertices of
neighboring streamlines that are the closest together – denote the
set of these Delaunay edges by D. We use the density at the mid-
point of an edge to represent the varying density across the edge.
Let m̄k,l

i, j := 1
2 (p̄

k
i + p̄l

j) the midpoint of an edge in D. Then, the
density energy reads as follows:

Eden = ∑
(p̄k

i ,p̄l
j)∈D

(
α(m̄k,l

i, j)(p
l
j−pk

i) ·v⊥(m̄k,l
i, j)−1

)2
.

This energy is small if the projection of a Delaunay edge onto the
normal v⊥ of the direction field v is close to the ideal distance 1/α.

In addition, there are two regularization terms: one term to pre-
vent stretching of edges and their shifting along the direction field.
the other one is the general regularity term;

Estretch = ∑
k,i

(
ek

i · (pk
i − p̄k

i)
)2

+
(

ek
i · (pk+1

i − p̄k+1
i)

)2
,

Ereg = ∑
k,i
∥pk

i − p̄k
i ∥2,

summing over all streamline edges and vertices, respectively.

The total energy is given by

E = wdenEden +wdirEdir +wstretchEstretch +wregEreg, (2)

and its unique minimizer can be found by one sparse linear
solve as it is quadratic in pk

i . The default values of the weights

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

Liu Zhenyuan et al. / Directionality-Aware Design of Embroidery Patterns

Directionality Density

Figure 7: Our user interface enables the users to interactively explore how the weights change the look of the results via a single slider. It
allows artistic control of directionality and density. Four sets of streamlines generated from a horizontal direction field and a linear density
field after the regularization step are shown, with different wden, from left to right, 101,102,103,and 104.

wden,wdir,wstretch and wreg are 100,10−1,102,10−8, respectively.
In our design system, the user can interactively change the weights
and observe the effect on the streamline pattern to achieve the de-
sired balance between faithfully reproducing density and direction-
ality, as shown in Figure 7. What matters the most is the ratio
between wden and wdir as they are used to control the density–
directionality tradeoff. The other two weights alleviate undesired
artifacts such as the shifting of the whole pattern, or the stretch-
ing/shifting of individual streamline, as shown in Figure 9.

3.5. Continuous Stitching Path Generation

The last step in generating a stitching path is to join the set of dis-
joint streamlines into one connected component. The reason for this
is that, during the physical embroidery process, the thread needs
to be cut at the end of every stitching path, and several additional
stitches need to be made to prevent loose ends. This process tends
to warp the underlying piece of cloth and decreases the quality of
the embroidery drastically. To avoid this issue, we connect the set
of streamlines into one continuous path, which minimizes the num-
ber of starts and stops that the embroidery machine must perform.

This entails adding additional edges connecting neighboring
streamlines. Inherently, these edges will run counter to the direc-
tion field v, so we want to minimize their visibility by preferring

Figure 8: We perform a Delaunay triangulation that enforces all
streamline edges (blue) to be part of the triangulation. The addi-
tional edges (purple) connect the vertices of neighboring stream-
lines.

short connecting segments in high-density regions. The problem of
choosing these edges can naturally be formulated as a minimum
spanning tree (MST) problem on the edges of the Delaunay trian-
gulation constructed during the previous step. We define the cost w
associated with adding an edge as

w(pk
i ,p

l
j) =
∥pl

j−pk
i ∥

α(mk,l
i, j)

,

where mk,l
i, j is defined as the midpoint of the edge (pk

i ,p
l
j).

Finally, we convert the MST into a single continuous stitching
path by traversing it in depth-first order. We add a stitch every time
an edge is traversed forward or backward. This effectively doubles
all edges of the tree, which is similar to patterns from commercial
embroidery software. This results in a stitching pattern ready for
fabrication.

4. Results, Comparison and Discussions

In this section, we demonstrate the capabilities of our streamline
generation. We first compare our method to state-of-the-art algo-
rithms for streamline generation. Next, we present a user interface
to convert input images into regions with density and directional-
ity fields. Finally, we use our user interface to design and fabricate
several examples of embroidery designs.

4.1. Alternative Streamline Algorithms

In Figure 10, we compare our method with the state-of-the-art ap-
proaches for generating streamline patterns. We use three varying
density and direction fields, please see Figure 10 (top). We observe
that our method spawns new streamlines as the density increases,
and terminates streamlines as density decreases. The streamlines
are also distributed such that they remain well-aligned with the pre-
scribed direction field.

The method of [KCPS15] runs at an interactive speed and gives a
good match for directionality and density in regions where the den-
sity gradient is orthogonal to the direction field. In other regions,

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

Liu Zhenyuan et al. / Directionality-Aware Design of Embroidery Patterns

Input Before Regularization

Regularize with Different wstretch,wreg

w
re

g
gr

ow
s

wstretch grows

Figure 9: From the given input fields, we generate the streamlines
and regularize them with different wreg and wstretch. The center cell
in the 3 × 3 matrix uses the default weights. The green dashed line
squares mark the bounding box of the streamlines before regular-
ization.

the method generates bifurcations that significantly violate the di-
rectionality requirement. In contrast, the method of [TTZ∗20] runs
in real-time, producing streamlines that are well-aligned with the
input fields globally but have large local errors, both in direction
and density. This is most visible near streamline endpoints, where
the curves form hook-like artifacts.

4.2. Commercial Embroidery Software

We also compare our method to the commercial software Bernina
DesignerPlus [Ber21] by manufacturing a flower petal example.
Our method (Figure 11, center) results in a stitching pattern that is
aligned with the direction field derived from the brush strokes in
the input image. The spacing of the threads produces an intensity
variation through half-toning, which results in a red-to-pink gradi-
ent that matches the input image when viewed from a distance. The
AutoDigitize function from the commercial software (Figure 11,
right) cannot reproduce the color gradient because it only separates
the input image into uniformly colored regions. Furthermore, the

In
pu

t
O

ur
s

[K
C

PS
15

]
[T

T
Z
∗ 20

]

Figure 10: We compare our method on a set of analytical in-
put fields with the alternative pattern generation approaches of
[KCPS15] and [TTZ∗20].

stitching direction is derived from the shape of the boundary of
each region, so it cannot generally be made to align with the direc-
tion of the brush strokes in the input image.

4.3. User Interface

Regions and Direction Field. We provide a user interface to sup-
plement our method in creating complex designs. The input to our
method is the boundary of a region, a direction field, and a density,
as defined in Section 3. For the boundary and direction field, we
adopt the image annotation tool Labelme [Wad21]. First, the user
draws a polygonal boundary to select a region in the image. Then,

Figure 11: We use the same image (left) as input to compare our
method (middle) with the AutoDigitize function in Bernina Design-
erPlus (right) by fabricating patterns.

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

Liu Zhenyuan et al. / Directionality-Aware Design of Embroidery Patterns

Figure 12: Left: Boundary and direction annotation via Lableme.
Middle: Density function α extracted from the input, darker color
indicates higher density. Right: Direction function v obtained by
interpolating direction annotation.

to define the direction field, the user draws a number of line seg-
ments within the region (Figure 12, left), which are automatically
interpolated to define a continuous direction field (Figure 12, right).

Colors and Density. The density information is extracted auto-
matically from each selected region Ω. To ensure that the color
information is smooth, we provide the option to denoise the image
using a bilateral filter [TM98]. To reduce the number of threads
used and extract the density function, we determine the two colors
s1,s2 most suitable to represent all colors in Ω as a convex combi-
nation.

To best preserve color information, we run a principal compo-
nent analysis (PCA) on the image in CMY color space and take the
first principal axis. Along this axis, we get a line of colors in CMY
space, onto which we can project the color of every pixel with mini-
mal loss. We remove the outliers of these projected points and then
use the pair of the remaining points furthest to either side of the
line as the colors for the region. From the pair, we pick the one
with a larger density as the background color s1, and the other as
the foreground s2. Then, all the projected colors in between can be
represented as a convex combination (1− t)s1 + ts2, with t ∈ [0,1].

The coefficient t at every point can then be converted into a den-
sity field α, as follows: We use s1 as the background color to uni-
formly fill the region first, and then stitch s2 on top to create a color
gradient. Assuming the s2 thread has a width of b > 0, and there
is a distance of 1/α between parallel stitch lines of s2, the visible
portion of s1 has a width of 1/α− b. The blend coefficient is then
given by t = b

(1/α−b)+b , so we need to set α = t
b .

Thread Colors. Finally, we map the proposed colors to the color
gamut of our embroidery machine. Because the thread selection is
limited, we seek to find colors that match the originals while pro-
viding good relative contrast. We achieve this goal by formulating
a loss function E : T 2 → R for the possible choices of the color
pairs,

E(t1, t2) = dE(s1, t1)+dE(s2, t2)+wmax{C(s1,s2)−C(t1, t2),0},

where s1,s2 are the PCA colors of the region, and t1, t2 ∈ T are
the physical thread colors from the set of all available threads T .
Furthermore, dE is the Delta E2000 distance [The01], a perceptual
color distance measure, and C is the relative contrast as specified by
the W3C consortium [W3C16]. We use a weight w = 10 to bring

the relative contrast into the range of typical magnitudes of color
distances. Finally, we exhaustively search for the pair of colors t1, t2
that minimizes E.

4.4. Embroidery Prototypes

We fabricated several stitching paths generated by our algorithm
using Bernina B590, an embroidery machine that supports auto-
matic embroidery. As a substrate, we used an ivory embroidery
cloth and colored polyester threads for stitching. The input images,
their corresponding segmentation, generated paths, and fabricated
results are shown in Figure 14.

The first example is a stylized FEATHER. We reproduce the
feather in two colors: pink as a background and white as a fore-
ground, which is introduced for adding structure. Thanks to the
alignment of the direction field with the barbs of the feather, the
white thread achieves a believable reproduction of the feathery tex-
ture. Our next example is a classic for embroidery, a CHERRY,
which we reproduce with a radial direction field. Even in this chal-
lenging scenario, our method can reconstruct the highlights from
the original image, creating the illusion of spherical cherries. We
significantly increase the complexity of the input image with the
PHOENIX example. It combines a complex direction field to match
the orientation of the individual tongues of fire with gradients to
render the body and wings.

For our next set of examples, we use the full images of the SUN-
SET, AURORA, and MOUNTAIN scenes. The SUNSET demonstrates
smooth transitions between different shades of color while preserv-
ing the directionality in the water reflection. The AURORA exam-
ple features complicated paths as it traverses the sky. Finally, the
MOUNTAIN example includes foliage and clouds. In all of these
images, our method captures the original appearance while high-
lighting the finer features through the direction field. The threads
of each embroidered sample are well-aligned and fill up the entire
canvas, leaving no gaps between the segmented regions. Moreover,
the cloth substrate only undergoes minimal stretching and warping
during embroidery, because we layer at most two stitches on top of
each other.

4.5. Timings

To produce the embroidery pattern for a multi-segment image, our
pipeline needs to run per segment. However, the computation of
each segment is independent and, thus, can be performed in paral-
lel. Therefore, we will discuss the timing for generating an embroi-
dery pattern for a single segment.

We prototype our method in Python, using SciPy for the k-d tree,
and Triangle package [She96] for computing constrained Delaunay
triangulation. To finish the pipeline shown in Figure 2 and gen-
erate the flower petal stitching pattern, it takes 1.58 seconds, of
which 0.03 seconds is used for sampling the sources and sinks; 0.79
seconds for tracing streamlines from the sources; 0.01 seconds for
matching the sinks and streamlines for cutting; 0.66 seconds for
constructing the sparse matrix for the regularization step; 0.02 sec-
onds for linear solve; and 0.07 seconds for connecting streamlines
via MST.

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

Liu Zhenyuan et al. / Directionality-Aware Design of Embroidery Patterns

We also analyze how our method scales. For given input density
and directionality fields, the time consumed for processing a seg-
ment depends on the thread width b (Section 4.2). The smaller b is,
the more threads (streamlines) are needed to fill the same regions.
Varying b for the petal example, we plot the timings of different
steps in our pipeline against the number of streamlines in Figure 13.
As the problem scales up, the most significant factors of runtime are
the streamline tracing and the assembly of the matrix for regular-
ization. These two steps can be accelerated via a parallelized C++
implementation.

T
im

e
(s

ec
)

Number of Lines

20

15

5

0
0 275 825 1100

#vertices: 1164
 time: 1.58 sec

 #vertices: 22630
 time: 20.23 sec

Connecting
Regularization Linear Solve
Regularization Matrix Assembly
Streamline Trimming
Streamline Tracing
Source/Sink Sampling

Figure 13: The runtime of the flower petal example. Varying thread
density leads to different numbers of streamlines. As the thread
width decreases, more streamlines are needed to approximate the
same density field, and hence, the number of streamlines and ver-
tices on the streamlines increases. As the problem scales up, the
two most important factors are assembly matrices for regulariza-
tion and the streamline tracing.

4.6. Limitations and Future Work

We propose an algorithm that facilitates the generation of em-
broidery designs with prescribed directionality. However, the
anisotropy of the thread appearance could be leveraged not only
to convey direction but also to simulate textures. An exciting di-
rection for future work is to include various stitching patterns to
enhance the high-frequency feature of the final pattern.

The direction field in our method is currently limited to be con-
tinuous and defined on a simply-connected domain. Although this
limitation still provides a wide range of inputs as demonstrated
by our fabricated samples, direction fields with singularities are
not supported at the moment. Likewise, non-simply-connected do-
mains have to be split into simply-connected ones. A promising
direction of future work would be to extend the method to handle
even these challenging direction fields.

We present a method for generating stitchable embroidery de-
signs from direction and density fields. To provide these inputs, we
propose a combination of user interaction and algorithmic process-
ing that splits an input image into regions formed by gradients of
two colors each. A possible direction of future work is to gener-
alize the method to consider color overlaps and blending similarly

to vector drawing [FLB17]. This would enable processing regions
with more colors to decrease the total number of regions.

During the stitching process, the cloth may locally bend or shrink
depending on the location of introduced threads. In our samples,
this effect is sufficiently small to be ignored. However, in certain
cases, it can cause significant distortion of the cloth, making future
stitches deviate from their intended location. An interesting avenue
for future work would be to explore how the warping of the cloth
depends on the directionality and density of the stitched pattern,
and to minimize this effect.

5. Conclusion

We present an algorithm for generating stitchable embroidery de-
signs that satisfy the fabrication constraints of an embroidery ma-
chine, and approximate the color gradients in an input image. To
achieve this goal, we formulate the search for patterns as a stream-
line generation problem with a density requirement, based on a
novel method for sampling spawn and terminal points of stream-
lines. We also provide a user interface that enables the artist to ex-
plore a range of designs that emphasize a regular spacing of stitch
lines or strict adherence to the desired direction field. In the last
step, we join streamlines into one connected component and con-
vert it into a single continuous path, so that it can be stitched with-
out cutting the thread, thus resulting in a clean design.

We compare our streamline generation algorithm to state-of-the-
art methods and find that it produces more regular results for diffi-
cult inputs. Furthermore, we fabricate several physical embroidery
samples that were designed using our algorithm and user interface.

Acknowledgment

This work was supported by the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innova-
tion programme (grant agreement No 715767 – MATERIALIZ-
ABLE) and FWF Lise Meitner (Grant M 3319). We thank the
anonymous reviewers for their insightful feedback; Solal Pirelli,
Shardul Chiplunkar, and Paola Mejia for proofreading; everyone
in the visual computing group at ISTA for inspiring lunch and
coffee breaks; Thibault Tricard for helping producing the results
of [TTZ∗20] in Figure 10. Special thanks to Tatyana Ozerova for
the permission to use her work for AURORA. The LANDSCAPE and
PHOENIX images were generated by Dall-E [RDN∗22]. SUNSET

image is from https://www.freepik.com/.

References
[Ahm14] AHMED A. G.: Modular line-based halftoning via recursive

division. In Proceedings of the Workshop on Non-Photorealistic Ani-
mation and Rendering (2014), pp. 41–48. doi:10.1145/2630397.
2630403.

[Ahm15] AHMED A. G.: From stippling to scribbling. In Proceedings
of Bridges 2015: Mathematics, Music, Art, Architecture, Culture (2015),
pp. 267–274. URL: http://archive.bridgesmathart.org/
2015/bridges2015-267.html.

[BCOM∗22] BEDEL A., COUDERT-OSMONT Y., MARTÍNEZ J.,
NISHAT R. I., WHITESIDES S., LEFEBVRE S.: Closed space-filling
curves with controlled orientation for 3D printing. Computer Graphics
Forum (2022), 473–492. doi:10.1111/cgf.14488.

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

https://www.freepik.com/
https://doi.org/10.1145/2630397.2630403
https://doi.org/10.1145/2630397.2630403
http://archive.bridgesmathart.org/2015/bridges2015-267.html
http://archive.bridgesmathart.org/2015/bridges2015-267.html
https://doi.org/10.1111/cgf.14488

Liu Zhenyuan et al. / Directionality-Aware Design of Embroidery Patterns

S
U

N
S

E
T

A
U

R
O

R
A

M
O

U
N

TA
IN

P
H

O
E

N
IX

C
H

E
R

R
Y

F
E

A
T

H
E

R
Image & Direction Annotations PCA & Direction Field Generated Stitches Fabrication

Figure 14: Different embroidery patterns produced by our method. We show the original image with direction annotation, the segmented
PCA image superposed by the direction field, the generated stitching pattern, and the photos of the patterns sewed by an embroidery machine.

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

Liu Zhenyuan et al. / Directionality-Aware Design of Embroidery Patterns

[Ber21] BERNINA INTERNATIONAL AG: Bernina embroidery software
9, 2021.

[CDS10] CRANE K., DESBRUN M., SCHRÖDER P.: Trivial Connections
on Discrete Surfaces. Computer Graphics Forum (2010), 1525–1533.
doi:10.1111/j.1467-8659.2010.01761.x.

[CMKM12] CHEN X., MCCOOL M., KITAMOTO A., MANN S.: Em-
broidery modeling and rendering. In Proceedings of Graphics Inter-
face 2012 (CAN, May 2012), Canadian Information Processing Society,
pp. 131–139. doi:10.5555/2305276.2305299.

[CPG15] CARLSON C., PALEY N., GRAY T.: Algorithmic quilt-
ing. In Proceedings of Bridges 2015: Mathematics, Music, Art, Ar-
chitecture, Culture (2015), pp. 231–238. URL: http://archive.
bridgesmathart.org/2015/bridges2015-231.html.

[Cro16] CROUSE D. F.: On implementing 2d rectangular assignment al-
gorithms. IEEE Transactions on Aerospace and Electronic Systems 52,
4 (Aug 2016), 1679–1696. doi:10.1109/TAES.2016.140952.

[CSZ17] CUI D., SHENG Y., ZHANG G.: Image-based embroidery mod-
eling and rendering. Computer Animation and Virtual Worlds 28, 2
(2017), e1725. doi:10.1002/cav.1725.

[DGK07] DATTA-GUPTA A., KING M. J.: Streamline simulation: theory
and practice. doi:10.2118/9781555631116.

[FLB17] FAVREAU J.-D., LAFARGE F., BOUSSEAU A.: Photo2clipart:
Image abstraction and vectorization using layered linear gradients. ACM
Transactions on Graphics (TOG) 36, 6 (2017), 1–11. doi:10.1145/
3130800.3130888.

[GLL∗21] GUAN X., LUO L., LI H., WANG H., LIU C., WANG S.,
JIN X.: Automatic embroidery texture synthesis for garment design and
online display. The Visual Computer (Sept. 2021), 2553–2565. doi:
10.1007/s00371-021-02216-0.

[HFL11] HUANG H., FU T.-N., LI C.-F.: Painterly rendering with
content-dependent natural paint strokes. The Visual Computer (Sept.
2011), 861–871. doi:10.1007/s00371-011-0596-5.

[HWYZ20] HSU C.-Y., WEI L.-Y., YOU L., ZHANG J. J.: Auto-
complete element fields. In Proceedings of the 2020 CHI Conference
on Human Factors in Computing Systems (2020), pp. 1–13. doi:
10.1145/3313831.3376248.

[IU09] INOUE K., URAHAMA K.: Chaos and graphics: Halftoning with
minimum spanning trees and its application to maze-like images. Com-
put. Graph. 33, 5 (oct 2009). doi:10.1016/j.cag.2008.09.
015.

[JL97] JOBARD B., LEFER W.: Creating Evenly-Spaced Stream-
lines of Arbitrary Density. In Visualization in Scientific Comput-
ing ’97 (Vienna, 1997), Springer, pp. 43–55. doi:10.1007/
978-3-7091-6876-9_5.

[KCPS13] KNÖPPEL F., CRANE K., PINKALL U., SCHRÖDER P.: Glob-
ally optimal direction fields. ACM Transactions on Graphics (July 2013),
59:1–59:10. doi:10.1145/2461912.2462005.

[KCPS15] KNÖPPEL F., CRANE K., PINKALL U., SCHRÖDER P.: Stripe
patterns on surfaces. ACM Transactions on Graphics (July 2015), 39:1–
39:11. doi:10.1145/2767000.

[KLC07] KANG H., LEE S., CHUI C. K.: Coherent line drawing. In Pro-
ceedings of the 5th international symposium on Non-photorealistic an-
imation and rendering (New York, NY, USA, Aug. 2007), Association
for Computing Machinery, pp. 43–50. doi:10.1145/1274871.
1274878.

[KSZ18] KONG Q., SHENG Y., ZHANG G.: Hybrid noise for LIC-based
pencil hatching simulation. In 2018 IEEE International Conference on
Multimedia and Expo (ICME) (2018), IEEE, pp. 1–6. doi:10.1109/
ICME.2018.8486527.

[LFH∗19] LI Y., FANG C., HERTZMANN A., SHECHTMAN E., YANG
M.-H.: Im2pencil: Controllable pencil illustration from photographs.
In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (2019), pp. 1525–1534. doi:10.1109/CVPR.
2019.00162.

[LH06] LEFEBVRE S., HOPPE H.: Appearance-space texture synthesis.
ACM Transactions on Graphics (TOG) 25, 3 (2006), 541–548. doi:
10.1145/1141911.1141921.

[LHM17] LIU C., HODGINS J., MCCANN J.: Whole-cloth quilting pat-
terns from photographs. In Proceedings of the Symposium on Non-
Photorealistic Animation and Rendering (New York, NY, USA, July
2017), Association for Computing Machinery, pp. 1–8. doi:10.
1145/3092919.3092925.

[LLD10] LAGAE A., LEFEBVRE S., DUTRÉ P.: Improving gabor
noise. IEEE Transactions on Visualization and Computer Graphics 17,
8 (2010), 1096–1107. doi:10.1109/TVCG.2010.238.

[LM14] LI H., MOULD D.: Continuous line drawings and designs. In-
ternational Journal of Creative Interfaces and Computer Graphics (IJ-
CICG) 5, 2 (2014), 16–39.

[LS20] LIU S., SONG H.: Flow visualization with density control.
In Computer Graphics International Conference (2020), pp. 301–312.
doi:10.1007/978-3-030-61864-3_26.

[LWSF10] LI H., WEI L.-Y., SANDER P. V., FU C.-W.: Anisotropic
Blue Noise Sampling. doi:10.1145/1882261.1866189.

[LXJ12] LU C., XU L., JIA J.: Combining sketch and tone for pen-
cil drawing production. In Proceedings of the Symposium on Non-
Photorealistic Animation and Rendering (June 2012), Eurographics As-
sociation, pp. 65–73. doi:10.5555/2330147.2330161.

[MAD05] MEBARKI A., ALLIEZ P., DEVILLERS O.: Farthest point
seeding for efficient placement of streamlines. In VIS 05. IEEE Visu-
alization, 2005. (Oct. 2005), pp. 479–486. doi:10.1109/VISUAL.
2005.1532832.

[MARI17] MARTÍN D., ARROYO G., RODRÍGUEZ A., ISENBERG T.:
A survey of digital stippling. Computers & Graphics 67 (2017), 24–44.
doi:10.1016/j.cag.2017.05.001.

[MS21] MA C., SUN Z.: Multilayered stitch generating for random-
needle embroidery. The Visual Computer (June 2021). doi:10.1007/
s00371-021-02195-2.

[Nee18] NEEDLEWORK R.: The Royal School of Needlework Book of
Embroidery: A Guide to Essential Stitches, Techniques and Projects.
Search Press, 2018.

[QCX∗20] QIAN W., CAO J., XU D., NIE R., GUAN Z., ZHENG R.:
Cnn-based embroidery style rendering. International Journal of Pattern
Recognition and Artificial Intelligence 34, 14 (2020), 2059045. doi:
10.1142/S0218001420590454.

[QXC∗19] QIAN W., XU D., CAO J., GUAN Z., PU Y.: Aesthetic art
simulation for embroidery style. Multimedia Tools and Applications 78,
1 (2019), 995–1016. doi:10.1007/s11042-018-6002-9.

[RDN∗22] RAMESH A., DHARIWAL P., NICHOL A., CHU C., CHEN
M.: Hierarchical Text-Conditional Image Generation with CLIP Latents,
Apr. 2022. doi:10.48550/arXiv.2204.06125.

[Sec02] SECORD A.: Weighted voronoi stippling. In Proceedings of the
2nd international symposium on Non-photorealistic animation and ren-
dering (2002), pp. 37–43. doi:10.1145/508530.508537.

[She96] SHEWCHUK J. R.: Triangle: Engineering a 2D Quality Mesh
Generator and Delaunay Triangulator. In Applied Computational Geom-
etry: Towards Geometric Engineering, Lin M. C., Manocha D., (Eds.),
vol. 1148 of Lecture Notes in Computer Science. Springer-Verlag, May
1996, pp. 203–222. From the First ACM Workshop on Applied Compu-
tational Geometry. doi:10.1007/BFb0014497.

[SLCZ09] SPENCER B., LARAMEE R. S., CHEN G., ZHANG E.: Evenly
spaced streamlines for surfaces: An image-based approach. In Com-
puter Graphics Forum (2009), Wiley Online Library. doi:10.1111/
j.1467-8659.2009.01352.x.

[TB96] TURK G., BANKS D.: Image-guided streamline placement. In
Proceedings of the 23rd annual conference on Computer graphics and
interactive techniques (New York, NY, USA, Aug. 1996), Association
for Computing Machinery, pp. 453–460. doi:10.1145/237170.
237285.

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

https://doi.org/10.1111/j.1467-8659.2010.01761.x
https://doi.org/10.5555/2305276.2305299
http://archive.bridgesmathart.org/2015/bridges2015-231.html
http://archive.bridgesmathart.org/2015/bridges2015-231.html
https://doi.org/10.1109/TAES.2016.140952
https://doi.org/10.1002/cav.1725
https://doi.org/10.2118/9781555631116
https://doi.org/10.1145/3130800.3130888
https://doi.org/10.1145/3130800.3130888
https://doi.org/10.1007/s00371-021-02216-0
https://doi.org/10.1007/s00371-021-02216-0
https://doi.org/10.1007/s00371-011-0596-5
https://doi.org/10.1145/3313831.3376248
https://doi.org/10.1145/3313831.3376248
https://doi.org/10.1016/j.cag.2008.09.015
https://doi.org/10.1016/j.cag.2008.09.015
https://doi.org/10.1007/978-3-7091-6876-9_5
https://doi.org/10.1007/978-3-7091-6876-9_5
https://doi.org/10.1145/2461912.2462005
https://doi.org/10.1145/2767000
https://doi.org/10.1145/1274871.1274878
https://doi.org/10.1145/1274871.1274878
https://doi.org/10.1109/ICME.2018.8486527
https://doi.org/10.1109/ICME.2018.8486527
https://doi.org/10.1109/CVPR.2019.00162
https://doi.org/10.1109/CVPR.2019.00162
https://doi.org/10.1145/1141911.1141921
https://doi.org/10.1145/1141911.1141921
https://doi.org/10.1145/3092919.3092925
https://doi.org/10.1145/3092919.3092925
https://doi.org/10.1109/TVCG.2010.238
https://doi.org/10.1007/978-3-030-61864-3_26
https://doi.org/10.1145/1882261.1866189
https://doi.org/10.5555/2330147.2330161
https://doi.org/10.1109/VISUAL.2005.1532832
https://doi.org/10.1109/VISUAL.2005.1532832
https://doi.org/10.1016/j.cag.2017.05.001
https://doi.org/10.1007/s00371-021-02195-2
https://doi.org/10.1007/s00371-021-02195-2
https://doi.org/10.1142/S0218001420590454
https://doi.org/10.1142/S0218001420590454
https://doi.org/10.1007/s11042-018-6002-9
https://doi.org/10.48550/arXiv.2204.06125
https://doi.org/10.1145/508530.508537
https://doi.org/10.1007/BFb0014497
https://doi.org/10.1111/j.1467-8659.2009.01352.x
https://doi.org/10.1111/j.1467-8659.2009.01352.x
https://doi.org/10.1145/237170.237285
https://doi.org/10.1145/237170.237285

Liu Zhenyuan et al. / Directionality-Aware Design of Embroidery Patterns

[TEZ∗19] TRICARD T., EFREMOV S., ZANNI C., NEYRET F.,
MARTÍNEZ J., LEFEBVRE S.: Procedural phasor noise. ACM
Transactions on Graphics (July 2019), 57:1–57:13. doi:10.1145/
3306346.3322990.

[The01] THE INTERNATIONAL COMMISION ON ILLUMINATION (CIE):
Improvement to industrial colour-difference evaluation. 2001.

[TM98] TOMASI C., MANDUCHI R.: Bilateral filtering for gray and
color images. In Sixth International Conference on Computer Vi-
sion (IEEE Cat. No.98CH36271) (Jan. 1998), pp. 839–846. doi:
10.1109/ICCV.1998.710815.

[TTZ∗20] TRICARD T., TAVERNIER V., ZANNI C., MARTÍNEZ J.,
HUGRON P.-A., NEYRET F., LEFEBVRE S.: Freely orientable mi-
crostructures for designing deformable 3D prints. ACM Transactions
on Graphics (Nov. 2020), 211:1–211:16. doi:10.1145/3414685.
3417790.

[TWY∗20] TU P., WEI L.-Y., YATANI K., IGARASHI T., ZWICKER M.:
Continuous curve textures. ACM Transactions on Graphics (TOG) 39, 6
(2020), 1–16. doi:10.1145/3414685.3417780.

[W3C16] W3C WORLD WIDE WEB CONSORTIUM: WCAG2.0 HTML
Techniques, Oct. 2016.

[Wad21] WADA K.: Labelme: Image Polygonal Annotation with Python,
2021. doi:10.5281/zenodo.5711226.

[WS94] WINKENBACH G., SALESIN D. H.: Computer-generated pen-
and-ink illustration. In Proceedings of the 21st annual conference
on Computer graphics and interactive techniques (1994), pp. 91–100.
doi:10.1145/192161.192184.

[WT13] WONG F. J., TAKAHASHI S.: Abstracting images into
continuous-line artistic styles. The Visual Computer (June 2013), 729–
738. doi:10.1007/s00371-013-0809-1.

[YSMY16] YANG K., SUN Z., MA C., YANG W.: Paint with Stitches:
A Random-needle Embroidery Rendering Method. In Proceedings of
the 33rd Computer Graphics International (New York, NY, USA, June
2016), Association for Computing Machinery, pp. 9–12. doi:10.
1145/2949035.2949038.

[ZISS04] ZANDER J., ISENBERG T., SCHLECHTWEG S., STROTHOTTE
T.: High quality hatching. In Computer Graphics Forum (2004), vol. 23,
Wiley Online Library, pp. 421–430. doi:10.1111/j.1467-8659.
2004.00773.x.

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

https://doi.org/10.1145/3306346.3322990
https://doi.org/10.1145/3306346.3322990
https://doi.org/10.1109/ICCV.1998.710815
https://doi.org/10.1109/ICCV.1998.710815
https://doi.org/10.1145/3414685.3417790
https://doi.org/10.1145/3414685.3417790
https://doi.org/10.1145/3414685.3417780
https://doi.org/10.5281/zenodo.5711226
https://doi.org/10.1145/192161.192184
https://doi.org/10.1007/s00371-013-0809-1
https://doi.org/10.1145/2949035.2949038
https://doi.org/10.1145/2949035.2949038
https://doi.org/10.1111/j.1467-8659.2004.00773.x
https://doi.org/10.1111/j.1467-8659.2004.00773.x

