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ABSTRACT
The supplemental material provides additional details on:

• validation of signal correction pipeline, (Section 1)
• our experimental apparatus, (Section 2),
• MTF correction, (Section 3),
• camera-guided tone correction, (Section 4),
• tone mapping operators used in experiment 3, (Section 5),
• details of validation study in Sec. 6.3, (Section 6),
• details of our data analysis, (Section 7),
• all the stimuli used in main experiment (Sec. 4) and tone
mapping experiment (Sec. 6), (Section 8).
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Figure 1: Results of our validation study on signal correction
pipeline. The gloss level could not be faithfully reproduced
without signal correction pipeline.

1 VALIDATION OF SIGNAL CORRECTION
PIPELINE

A validation gloss-matching study was conducted without applying
our signal correction pipeline. In total, 6 participants, age from 25
to 43, with 1 female and 5 males, volunteered in this user study.
The experiment was approved by the department ethic board. The
experiment procedure is the same as our 𝐶baseline experiment. We
show the result of this study in Fig. 1. A large error between the
ground truth and selected gloss level has been observed. Our signal
correction pipeline significantly improved the gloss reproduction
accuracy, as shown in results of baseline experiment in Sec. 5 of
the main paper.

2 EXPERIMENT APPARATUS
Our experimental setup consists of three main components: a high-
dynamic range stereoscopic display, a real-scene-box (RSB), and a 2D
camera gantry. The stereoscopic display uses two projector-based

https://doi.org/10.1145/3610548.3618226
https://doi.org/10.1145/3610548.3618226


SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia Chen et al.

9.7′′ HDR displays [Seetzen et al. 2004], each with a resolution of
2048 × 1536. To prevent banding artifacts caused by insufficient
bit-depth, the display algorithm utilizes spatiotemporal dithering.
We align the LCD and projector planes, calibrate display colors, and
align rendered viewpoints to user’s eyes following the calibration
procedure proposed by [Zhong et al. 2021]. We further optimize the
display for psychophysical experiments as proposed by [Wuerger
et al. 2020]. The apparatus also contains a RSB in front of the ob-
server allowing a small-scale lightable physical scene seen through
a pair of beam splitters. This enables a side-by-side presentation
of a real object and its virtual counterpart (Fig. 2) positioned 65
cm distance away from the participants’ eyes, producing a resolu-
tion of 120 pixels per visual degree. The box is made from black
acrylic and its back wall is coated with Vantablack1 to eliminate in-
direct illumination and improve the contrast of the captured images
[Talvala et al. 2007]. A custom-built turntable was placed in the
RSB (Fig. 2 (left)) that could hold and switch between four objects,
thereby reducing the number of manual changes required during
the experiment (Fig. 2 (middle)). Only the leftmost object and its
virtual image are visible to the observer and the rest are outside
the display’s field of view (Fig. 2 (right)).

3 MTF CORRECTION
As discussed in Section 3.2 of the main paper, our captured images
are prone to blur in sharp bright regions such as glossy specular
highlights. We recover the lost high-frequency information by first
estimating the camera’s MTF and using it for deconvolution. To
estimate theMTFwe use the slanted edge technique as implemented
in the SFRMAT4 MATLAB toolbox [Burns and Williams 2018]. To
reduce measurement errors in the estimated MTF, we fit a sum of
Gaussian to the data:

MTF(𝜌) = 𝑎1 · 𝑒
− (𝜌−𝑏1 )2

𝑐21 + 𝑎2 · 𝑒
− (𝜌−𝑏2 )2

𝑐22 , (1)

where 𝜌 is the spatial frequency in cycles/pixel, 𝑎1 = 0.935, 𝑏1 =

0.066, 𝑐1 = 0.266, 𝑎2 = 9.679𝑒 + 08, 𝑏2 = 27.115, and 𝑐2 = 5.681
are free parameters fitted to the noisy data from SFRMAT4 MTF
estimation using least square minimisation. Note that before fit-
ting, we clamped the MTF for spatial frequencies greater than 0.35
cy/px. This helps avoid enhancing noise and division by zero in the
next deconvolution step. We can now use the smooth MTF filter
to obtain a sharp image of the specular reflection by performing
deconvolution:

𝐼 ′ = 𝔉−1
{
𝔉 {𝐼 } (𝜌)
MTF(𝜌)

}
, (2)

where 𝔉 denotes the Fourier transform, 𝐼 is the original blurry
image and 𝐼 ′ is the recovered sharp image.

4 CAMERA-GUIDED TONE CORRECTION
Since our MTF correction step is not sufficient to correct low-
frequency aberrations, we adopt a camera-guided tone correction
approach where we capture images of the real object and the ren-
dered image side-by-side and use histogram matching to align their
luminance histograms. Specifically, we find the intensity value

1Vantablack, Surrey Nanosystems

matching from the cumulative distribution function of displayed
image 𝐶𝐷𝐹𝑑 and the real object image 𝐶𝐷𝐹𝑟 :

𝐶𝐷𝐹𝑑 (𝑥𝑖 ) = 𝐶𝐷𝐹𝑟 (𝑥 𝑗 ), 𝑖, 𝑗 ∈ {0, 1, ..., 𝑁 }, (3)

where 𝑁 is the number of bins in the histogram and has been set
to 1𝑒6. Then we formulate the mapping function as:

𝑇 (𝑥𝑖 ) = 𝐶𝐷𝐹−1
𝑑

(𝐶𝐷𝐹𝑟 (𝑥𝑖 )) = 𝑥 𝑗 , (4)

finally, the continuous version of the matching function can be
further represented by a piecewise cubic Hermite polynomial:

𝑇 (𝑥) = {𝐻𝑛
3 (𝑥)}, 𝑥𝑛 ≤ 𝑥 ≤ 𝑥𝑛+1, 𝑛 = 0, 1, ..., 𝑁 − 1, (5)

where 𝐻𝑛
3 (𝑥) is the 𝑛th cubic Hermite polynomial. To preserve the

calibrated color, we perform the procedure for one color channel,
which is green in our case as it covers the largest intensity range,
and assume the same scaling applies to other channels. Note that
we utilized the same 𝑇 for all the gloss levels.

5 TONE MAPPING OPERATOR
We set three initial values that are related to the display capability:
the starting value 𝑠 , the ending value 𝑒 , and the clipping luminance
𝑐 . As shown in Fig. 4, the starting and ending points of cubic Bézier
curve can then be represented as 𝑃0 = (𝑠, 𝑠) and 𝑃3 = (𝑒, 𝑐). A
parameter 𝜌 ∈ [0, 1) is used to represent the steepness of a tone
curve, from which the two controlling points can be calculated as
𝑃1 = (𝑐−𝜌 (𝑐−𝑠), 𝑐−𝜌 (𝑐−𝑠)) and 𝑃2 = (𝑐+𝜌 (𝑒−𝑐), 𝑐). When 𝜌 = 0,
𝑃1 and 𝑃2 will be overlapped to 𝑃∗ = (𝑐, 𝑐) and the cubic Bézier
curve shrink to a quadratic Bézier curve, while 𝜌 → 1 the cubic
Bézier curve shrink to a linear Bézier curve and cause discontinuity
at 𝑃0 and 𝑃3, which should be avoided. The value smaller than 𝑠 is
kept unchanged and the value larger than 𝑒 is equal to the clipping
luminance 𝑐 , while the value in between could be compressed by
tone mapping curve formulated explicitly as:

𝐵(𝑡) = (1 − 𝑡)3𝑃0 + 3(1 − 𝑡)2𝑃1 + 3(1 − 𝑡)2𝑃2 + 𝑡3𝑃3, 0 ≤ 𝑡 ≤ 1 (6)

There are two methods to control effect of tone curve: 1) adjusting 𝜌
with pre-fixed starting and ending points; 2) adjusting the starting
and ending points with 𝜌 fixed. Either one could be used for tone
curve generation. In the experiment, we want to examine the influ-
ence of clipping luminance and steepness of the tonemapping curve.
We used the first method and set 𝑠 = 120, 𝑒 = 1200 for all designed
four tone curves:𝑇𝑀ℎ𝑖𝑔ℎ−𝑠𝑡𝑒𝑒𝑝 ,𝑇𝑀ℎ𝑖𝑔ℎ−𝑔𝑟𝑎𝑑𝑢𝑎𝑙 ,𝑇𝑀𝑙𝑜𝑤−𝑠𝑡𝑒𝑒𝑝 , and
𝑇𝑀𝑙𝑜𝑤−𝑔𝑟𝑎𝑑𝑢𝑎𝑙 , in which ℎ𝑖𝑔ℎ and 𝑙𝑜𝑤 represent a large clipping
luminance calculated as 𝑐ℎ𝑖𝑔ℎ = 100.5𝑙𝑜𝑔 (𝑠𝑒 ) = 379.47 and a small
clipping luminance calculated as 𝑐𝑙𝑜𝑤 = 100.5𝑙𝑜𝑔 (𝑠𝑐ℎ𝑖𝑔ℎ ) = 213.39,
𝑠𝑡𝑒𝑒𝑝 and 𝑔𝑟𝑎𝑑𝑢𝑎𝑙 correspond to 𝜌 = 0 and 𝜌 = 0.3 respectively.
We show the results of four tone mapping operators together with
HDR image in Fig. 8, 9, 10, 11, and 12.

6 DETAILS OF VALIDATION STUDY IN SEC. 6.3
Apparatus. A Dell UltraSharp 32 4K HDR Monitor (UP3221Q)

with HDR 10/ Display HDR 1000 certificate was used in this exper-
iment. We calibrate the display to BT. 2020 color space with D65
white point using gamma curve SMPTE ST.2084 PQ.
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Figure 2: Experiment apparatus. The real scene box contains a turntable with 4 objects of different gloss levels. The observer
sees only one real object in a given trial. A virtual counterpart of the object is rendered on an HDR stereoscope and shown
side-by-side with the real object. The observer is asked to change the glossiness of the virtual object till it matches the real one.

Figure 3: Illustration of our experimental apparatus that
enables side-by-side comparison of HDR stereoscopic images
with the real object.

Participants. Twelve volunteers participated in this experiment,
aged from 25 to 48, with 2 females and 10 males, from the university.
All participants have normal or corrected-to-normal vision, and
were naïve to the experiment’s goal. The experiment was approved
by the department ethic board.

Procedure. During the experiment, participants adjusted their
seats to make sure they were sitting around 80 cm away from
the display (angular resolution of 80 pixels-per-degree (ppd)). A
pair of stimuli was shown in the middle of the screen, and the
participant’s task was to: “Select the image that has a higher gloss
level.”. They could press left or right on the keyboard, indicating
that left is glossier or right is glossier, respectively. This experiment
consisted of 100 trials selected in total, which are actively sampled
using [Mikhailiuk et al. 2021], for each participant and lasted for
approximately 15 minutes.
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Figure 4: Tone mapping operator formulated by cubic Bézier
curve.

Figure 5: Captured latlong photograph of our illumination
using reflective mirror ball.
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Figure 6: Heatmap of our pairwise comparison matrix 𝑀 in
tone mapping validation study.

Figure 7: Demonstration of captured light field stereo pair
using 100% gloss level stimuli. View animation in Adobe
Acrobat.

7 STATISTICAL ANALYSIS RESULTS
Tables 1, 2, 3, 4, 5, and 6 show the detailed results of the statistical
analysis for the factors affecting perceived gloss differences (Section
5) as described in the main paper. Tables 7, 8, 9, 10, and 11 show
the detailed results of the statistical analysis for the effect of tone
mapping (Section 6) as described in the main paper.

Table 1: Estimates of the regression coefficients, confidence
intervals (2.5% and 97.5%), t-values (t), and p-values (p) for the
ordinal logistic regression model modeling the effect of the
albedo factor. Nagelkerke pseudo-R2 indicates the goodness-
of-fit, i.e., how well the model explains the data. The baseline
for this model is 𝐶𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 .

Estimates 2.5% CI 97.5% CI t p
𝐶𝑏𝑙𝑎𝑐𝑘 0.629 -0.301 1.157 1.131 0.188
Num. Obs 480
R2 Nagelkerke 0.84

Table 2: Estimates of the regression coefficients, confidence
intervals (2.5% and 97.5%), t-values (t), and p-values (p) for the
ordinal logistic regression model modeling the effect of the
stereo factor. Nagelkerke pseudo-R2 indicates the goodness-
of-fit, i.e., how well the model explains the data. The baseline
for this model is 𝐶𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 .

Estimates 2.5% CI 97.5% CI t p
𝐶𝑚𝑜𝑛𝑜 0.057 -0.869 0.983 0.121 0.904
Num. Obs 480
R2 Nagelkerke 0.75

Table 3: Estimates of the regression coefficients, confidence
intervals (2.5% and 97.5%), t-values (t), and p-values (p) for the
ordinal logistic regression model modeling the effect of the
dynamic range factor. Nagelkerke pseudo-R2 indicates the
goodness-of-fit, i.e., how well the model explains the data.
The baseline for this model is 𝐶𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 .

Estimates 2.5% CI 97.5% CI t p
𝐶𝑇𝑀 1.821 0.854 2.815 3.648 <0.001
Num. Obs 480
R2 Nagelkerke 0.71

Table 4: Estimates of the regression coefficients, confidence
intervals (2.5% and 97.5%), t-values (t), and p-values (p) for
the ordinal logistic regression model modeling the effect
of the interaction of the dynamic range and stereo factors.
Nagelkerke pseudo-R2 indicates the goodness-of-fit, i.e., how
well the model explains the data. The baseline for this model
is 𝐶𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 .

Estimates 2.5% CI 97.5% CI t p
𝐶𝑚𝑜𝑛𝑜 0.050 -0.844 0.945 0.110 0.912
𝐶𝑇𝑀 1.763 0.821 2.761 3.653 <0.001
𝐶𝑚𝑜𝑛𝑜+𝑇𝑀 -0.496 -1.823 0.831 -0.734 0.463
Num. Obs 960
R2 Nagelkerke 0.70
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Table 5: Estimates of the regression coefficients, confidence
intervals (2.5% and 97.5%), t-values (t), and p-values (p) for the
ordinal logistic regression model modeling the effect of the
peak luminance factor. Nagelkerke pseudo-R2 indicates the
goodness-of-fit, i.e., how well the model explains the data.
The baseline for this model is 𝐶𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 .

Estimates 2.5% CI 97.5% CI t p
𝐶𝑚𝑖𝑑𝑑𝑙𝑒 :𝑏𝑟𝑖𝑔ℎ𝑡 2.747 1.728 3.766 5.293 <0.001
𝐶𝑑𝑎𝑟𝑘 :𝑏𝑟𝑖𝑔ℎ𝑡 3.521 2.495 4.546 6.738 <0.001
Num. Obs 720
R2 Nagelkerke 0.70

Table 6: Estimates of the regression coefficients, confidence
intervals (2.5% and 97.5%), t-values (t), and p-values (p) for the
ordinal logistic regression model modeling the effect of the
peak luminance factor. Nagelkerke pseudo-R2 indicates the
goodness-of-fit, i.e., how well the model explains the data.
The baseline for this model is 𝐶𝑑𝑎𝑟𝑘 :𝑏𝑟𝑖𝑔ℎ𝑡 .

Estimates 2.5% CI 97.5% CI t p
𝐶𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 -2.747 -3.766 -1.728 -5.293 <0.001
𝐶𝑚𝑖𝑑𝑑𝑙𝑒 :𝑏𝑟𝑖𝑔ℎ𝑡 0.774 -0.173 1.720 1.605 0.109
Num. Obs 720
R2 Nagelkerke 0.70

Table 7: Estimates of the regression coefficients, confidence
intervals (2.5% and 97.5%), t-values (t), and p-values (p) for the
ordinal logistic regression model modeling the effect of the
different tone mapping functions and the stereo condition.
Nagelkerke pseudo-R2 indicates the goodness-of-fit, i.e., how
well the model explains the data. The baseline for this model
is the 𝐻𝐷𝑅 condition.

Estimates 2.5% CI 97.5% CI t p
𝑇𝑀ℎ𝑖𝑔ℎ−𝑠𝑡𝑒𝑒𝑝 0.350 -0.632 1.332 1.698 0.485
𝑇𝑀ℎ𝑖𝑔ℎ−𝑔𝑟𝑎𝑑𝑢𝑎𝑙 1.859 0.890 2.827 3.765 <0.001
𝑇𝑀𝑙𝑜𝑤−𝑠𝑡𝑒𝑒𝑝 2.641 1.627 3.600 5.196 <0.001
𝑇𝑀𝑙𝑜𝑤−𝑔𝑟𝑎𝑑𝑢𝑎𝑙 4.838 3.797 5.878 9.122 <0.001
Stereoscopic -0.027 -1.029 0.975 -0.052 0.958
Num. Obs 1200
R2 Nagelkerke 0.78

Table 8: Estimates of the regression coefficients, confidence
intervals (2.5% and 97.5%), t-values (t), and p-values (p) for the
ordinal logistic regression model modeling the effect of the
different tone mapping functions and the stereo condition.
Nagelkerke pseudo-R2 indicates the goodness-of-fit, i.e., how
well the model explains the data. The baseline for this model
is the 𝑇𝑀ℎ𝑖𝑔ℎ−𝑠𝑡𝑒𝑒𝑝 condition.

Estimates 2.5% CI 97.5% CI t p
HDR -0.350 -1.333 0.632 -0.699 0.485
𝑇𝑀ℎ𝑖𝑔ℎ−𝑔𝑟𝑎𝑑𝑢𝑎𝑙 1.508 0.578 2.453 3.159 0.002
𝑇𝑀𝑙𝑜𝑤−𝑠𝑡𝑒𝑒𝑝 2.263 1.316 3.226 4.652 <0.001
𝑇𝑀𝑙𝑜𝑤−𝑔𝑟𝑎𝑑𝑢𝑎𝑙 4.487 3.486 5.505 8.723 <0.001
Stereoscopic -0.514 -1.469 0.439 -1.057 0.291
Num. Obs 1200
R2 Nagelkerke 0.78

Table 9: Estimates of the regression coefficients, confidence
intervals (2.5% and 97.5%), t-values (t), and p-values (p) for the
ordinal logistic regression model modeling the effect of the
different tone mapping functions and the stereo condition.
Nagelkerke pseudo-R2 indicates the goodness-of-fit, i.e., how
well the model explains the data. The baseline for this model
is the 𝑇𝑀ℎ𝑖𝑔ℎ−𝑔𝑟𝑎𝑑𝑢𝑎𝑙 condition.

Estimates 2.5% CI 97.5% CI t p
HDR -1.860 -2.834 -0.897 -3.767 <0.001
𝑇𝑀ℎ𝑖𝑔ℎ−𝑠𝑡𝑒𝑒𝑝 -1.510 -2.453 -0.578 -3.162 0.002
𝑇𝑀𝑙𝑜𝑤−𝑠𝑡𝑒𝑒𝑝 0.754 -0.142 1.655 1.647 0.100
𝑇𝑀𝑙𝑜𝑤−𝑔𝑟𝑎𝑑𝑢𝑎𝑙 2.978 2.034 3.932 6.157 <0.001
Stereoscopic -0.635 -1.551 0.277 -1.364 0.173
Num. Obs 1200
R2 Nagelkerke 0.78

Table 10: Estimates of the regression coefficients, confidence
intervals (2.5% and 97.5%), t-values (t), and p-values (p) for the
ordinal logistic regression model modeling the effect of the
different tone mapping functions and the stereo condition.
Nagelkerke pseudo-R2 indicates the goodness-of-fit, i.e., how
well the model explains the data. The baseline for this model
is the 𝑇𝑀𝑙𝑜𝑤−𝑠𝑡𝑒𝑒𝑝 condition.

Estimates 2.5% CI 97.5% CI t p
HDR -2.613 -3.608 -1.634 -5.194 <0.001
𝑇𝑀ℎ𝑖𝑔ℎ−𝑠𝑡𝑒𝑒𝑝 -2.263 -3.226 -1.316 -4.652 <0.001
𝑇𝑀ℎ𝑖𝑔ℎ−𝑔𝑟𝑎𝑑𝑢𝑎𝑙 -0.754 -1.655 0.142 -1.648 0.100
𝑇𝑀𝑙𝑜𝑤−𝑔𝑟𝑎𝑑𝑢𝑎𝑙 2.225 1.283 3.171 4.625 <0.001
Stereoscopic -1.657 -2.598 -0.733 -3.489 <0.001
Num. Obs 1200
R2 Nagelkerke 0.78

Table 11: Estimates of the regression coefficients, confidence
intervals (2.5% and 97.5%), t-values (t), and p-values (p) for the
ordinal logistic regression model modeling the effect of the
different tone mapping functions and the stereo condition.
Nagelkerke pseudo-R2 indicates the goodness-of-fit, i.e., how
well the model explains the data. The baseline for this model
is the 𝑇𝑀𝑙𝑜𝑤−𝑔𝑟𝑎𝑑𝑢𝑎𝑙 condition.

Estimates 2.5% CI 97.5% CI t p
HDR -4.837 -5.885 -3.805 -9.122 <0.001
𝑇𝑀ℎ𝑖𝑔ℎ−𝑠𝑡𝑒𝑒𝑝 -4.488 -5.505 -3.486 -8.724 <0.001
𝑇𝑀ℎ𝑖𝑔ℎ−𝑔𝑟𝑎𝑑𝑢𝑎𝑙 -2.979 -3.932 -2.034 -6.159 <0.001
𝑇𝑀𝑙𝑜𝑤−𝑠𝑡𝑒𝑒𝑝 -2.224 -3.171 -1.283 -4.624 <0.001
Stereoscopic -1.555 -2.576 -0.536 -2.990 0.003
Num. Obs 1200
R2 Nagelkerke 0.78
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Figure 8: Stereoscopic stimuli demonstration. Note that all images are gamma corrected by 𝛾 = 1
3.6 for better visualization on

low dynamic range display.

8 ALL THE STIMULI USED IN MAIN
EXPERIMENT (SEC. 4) AND TONE MAPPING
EXPERIMENT (SEC. 6)

The stimuli used in our study are fabricated by dipping 3D printed
objects in a varnish mixture. The mixture consists of a proportion of
glossy and matte varnishes. For simplicity we refer to the samples
by the percentage of glossy varnish. We manufactured stimuli with
10% and 20% gloss (Figure 8), 30% and 40% gloss (Figure 9), 50% and
60% gloss (Figure 10), 70% and 80% gloss (Figure 11), and 90% and
100% gloss (Figure 12).
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Figure 9: Stereoscopic stimuli demonstration. Note that all images are gamma corrected by 𝛾 = 1
3.6 for better visualization on

low dynamic range display.
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Figure 10: Stereoscopic stimuli demonstration. Note that all images are gamma corrected by 𝛾 = 1
3.6 for better visualization on

low dynamic range display.
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Figure 11: Stereoscopic stimuli demonstration. Note that all images are gamma corrected by 𝛾 = 1
3.6 for better visualization on

low dynamic range display.
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Figure 12: Stereoscopic stimuli demonstration. Note that all images are gamma corrected by 𝛾 = 1
3.6 for better visualization on

low dynamic range display.
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