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Fig. 1. We propose a system for fabricating digital drawing tools that mimic the feel of real tools. To this end, we measure properties of different real drawing
tools, study their perception, and design a perception-aware space of drawing tools. We later develop a simulation technique which allows us to embed new
designs into the space, evaluate the pairwise similarity between them and the tools we want to replicate. This drives the design process of different digital
tools.

Digital drawing is becoming a favorite technique for many artists. It allows
for quick swaps between different materials, reverting changes, and applying
selective modifications to finished artwork. These features enable artists to
be more efficient and creative. A significant disadvantage of digital drawing
is poor haptic feedback. Artists are usually limited to one surface and a few
different stylus nibs, and while they try to find a combination that suits their
needs, this is typically challenging. In this work, we address this problem
and propose a method for designing, evaluating, and optimizing different
stylus designs. We begin with collecting a representative set of traditional
drawing tools. We measure their physical properties and conduct a user
experiment to build a perceptual space that encodes perceptually-relevant
attributes of drawing materials. The space is optimized to both explain
our experimental data and correlate it with measurable physical properties.
To embed new drawing tool designs into the space without conducting
additional experiments and measurements, we propose a new, data-driven
simulation technique for characterizing stylus-surface interaction. We finally
leverage the perceptual space, our simulation, and recent advancements in
multi-material 3D printing to demonstrate the application of our system
in the design of new digital drawing tools that mimic traditional drawing
materials.
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1 INTRODUCTION
Everyone draws and everyone writes: some with skill and precision,
while many of us simply aim to communicate and record. All of
us begin by writing and drawing with simple yet highly effective
hand tools, e.g. crayons, pencils and pens, technologies that have
largely remained unchanged for well over a century [Petroski 1992;
VanDulken 2002]. Aswe turn to digital devices, styli and tablets offer
the promise of integrating our ease and comfort in the affordances
of hand implements with the advantages of software tools.
Many previous obstacles to stylus adoption are gone. Stylus re-

sponse time, pressure sensitivity, stroke capture and palm rejection
have all been rapidly improving. Concurrently, drawing apps like Pa-
per by FiftyThree1 have successfully focused on replicating the wide
variety of physical marks made by differing implements and mate-
rials. However, the complementary goal of emulating the physical
feel of real-world drawing and writing materials with styli remains
an important and ongoing challenge.

1https://www.fiftythree.com/
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A number of recent commercial and research efforts have focused
on constructing new stylus devices and tablet surfaces to provide
better feels-like haptic response behavior [Annett et al. 2014; Cho
et al. 2016; Wang et al. 2016] for the stylus-to-tablet interaction.
The starting point in all cases is the simple-to-state but challenging
goal of replicating the “hand feel” of pens and pencils. These are
by far the most used writing and drawing implements and users
consistently report the lack of similar feedback in digital styli to be
a hindrance to their adoption of styli [Annett et al. 2014].
To address these needs we take initial steps towards enabling

the consistent and systematic design of passive feedback styli that
feel like targeted drawing and writing tools. We propose a suite
of computational models and a method for evaluating, designing,
and optimizing stylus components that emulate the physical feel of
drawing tools.
Passive feedback is the natural response given by the combined

physical interactions of the stylus in frictional contact with the
tablet surface as experienced by the hand gripping the stylus. In
turn, this is mediated by a large number of complex and coupled
physical phenomena. These include the mechanical vibrations the
tablet surface excites in the stylus, combined with frictional stiction,
material wear and deposition, stick-slip behavior and viscous damp-
ing at the tip that changes (e.g., Coulomb’s Law) with the amount
of pressure applied by the hand.

Each implement thus has distinct characteristics that lend them-
selves to different applications, e.g., broad hatch and fill marks vs
precise lining, and they each have distinctly different haptic be-
haviors that identify them to the user. Thus there is an intimate
connection between the way a drawing tool feels and how we use
it. Without this haptic feedback we lose much of the finely tuned
ability we have long integrated to make controlled marks [Danna
and Velay 2015]. However, fidelity rendering of haptic feedback
remains a challenging and open research problem [Choi and Tan
2005].

It is equally important to note that mark-making styles vary with
how controllable an implement is - the smoother the response the
more gestural and loose a marking we make, e.g., for artwork; while
in the midground reasonably frictional response enables fine control,
e.g., for note taking and mechanical drawing; finally, going all the
way to extremely rough feedback creates another range of more
loosely controlled artistic gestures associated with noisy pattern
generation for textures; e.g., with charcol and chalks [Mayer 1991].
Recent commercial products, including the Apple Pencil2, the

Microsoft Surface Pen3, the Wacom stylus4, the PaperLike cover5,
and the reMarkable system6 similarly focus on leveraging passive
feedback with their main goal the faithful reproduction of these
haptic sensations from drawing and writing with real materials
[Williams 2015]. These styli and surfaces have, in almost all cases,
been painstakingly designed by trial and error: swapping in and
hand testing differing stylus and surface pairs and iterating over

2https://www.apple.com/apple-pencil/
3https://www.microsoft.com/en-us/surface/accessories/surface-pen
4http://www.wacom.com/
5https://paperlike.com/
6https://remarkable.com/

shapes and materials7. Even so, as we will show in Section 6, current
tools only cover a small subset of the range spanned by even stan-
dard drawing materials. Embedded actuation devices have also been
explored [Cho et al. 2016; Romano and Kuchenbecker 2012; Wang
et al. 2016]. However, current latencies in available actuation puts
these methods well out of reach for realistic haptic-rate feedback
response to stroke gestures.
Our goal is to enable the automated design of styli that will

passively deliver the haptic cues of all preferred drawing and writing
implements; or even to blend between multiple tools to create styli
that respond to mark making with novel feedback.

To investigate perceptually-relevant properties of drawing tools
we start with physical measurements of a representative set of tra-
ditional drawing tools (Section 3). Next, we embed these tools into
a perceptual space where the perceived distances between different
tools are defined by the Euclidean distance between them (Section
4). To this end, we conduct an extensive psychophysical experiment.
The results of this study are analyzed using our novel method that
jointly optimizes for the perceptual space and its correlation to phys-
ical parameters of the drawing tools. Critically this correlation with
the physical properties enables a direct application to stylus design
and fabrication. To design and evaluate new drawing tools without
need for fabrication and measurement, we propose a new method
for simulating the interaction between drawing tools and substrates
(Section 5). Since many of the physical phenomena governing the
response behavior are complex and expensive to model [Otaduy
and Lin 2004; Romano and Kuchenbecker 2012], we propose a data-
driven simulation method governed by our previous measurements.
Thus the primary contributions of this work include:

• measurement of the interactions between drawing tools and
different substrates commonly used for traditional writing
and drawing,

• perceptual experiments evaluating similarities between dif-
fering drawing tools,

• a perceptual space optimization that builds a space of tools
whose dimensions are correlated with the physical properties
of the drawing materials,

• a new data-driven method for simulating drawing tools, and
• application of the above methodology to the design and eval-
uation of the haptic sensation of digital drawing tools.

2 PREVIOUS WORK
Our work combines insights from perception, haptics, and physical
simulation. In this section, we provide an overview of previous work
and its relation to our method.

2.1 Human Perception
While the perception of drawing tools is a largely unexplored re-
search area, many works have considered texture exploration using
a rigid probe [Klatzky and Lederman 2002]. In this context, the most
dominant attribute is roughness – the perception of which is primar-
ily governed by vibrations of the tool [Klatzky and Lederman 2008].
Vibrations are sensed by Pacinian corpuscles [Hollins et al. 2006;
Klatzky et al. 2003; Yoshioka and Zhou 2009] – mechanoreceptors

7https://paperlike.com/
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sensitive to high-frequency vibrations with a peak sensitivity at 160-
320 Hz [Israr et al. 2006a]. The vibrations sensed through the tool
depend on the properties of the tool and the surfaces. Klatzky and
Lederman [2002] studied surfaces composed of raised pins. They
demonstrated that along with surface properties, i.e., spacing of pins,
tool size, exploratory speed, and applied force influence roughness
judgments. Furthermore, their results suggest that probe size and
pin spacing are primary factors influencing the vibrations and so
perceived roughness. Bensmaina et al. [2005] proposed to quantify
the aggregated effect of the above factors on roughness perception
using the spectral power of the vibrations produced by the probe.

Yoshioka et al. [2007] conducted user experiments in which sub-
jects explored a wide range of real materials using a probe. They
found that primary driving attributes for texture perception are
roughness, stickiness, and compliance. They also proposed to model
these attributes using logarithms of vibratory power, the coefficient
of friction, and relative compliance, respectively. This supports the
earlier findings that perception of vibration, force, and compliance
follow Weber’s law [Israr et al. 2006b; Jones and Hunter 1990; Nisky
et al. 2011; Pongrac 2008].

In contrast to the above studies, we investigate the perception of
drawing tools. Consequently, we account for both differing surfaces
and probes (styli). Similarly to Yoshioka et al. [2007], we explain
the perception using measurable physical properties; however, we
also focus on critical additional properties including geometry and
material of styli. We demonstrate that these attributes are crucial in
the context of styli design.

2.2 Perceptual Spaces
Perception of varying physical properties can be analyzed via a
perceptual space that embeds a set of stimuli in a space where
the distances between the samples correspond directly to the per-
ceived similarity between them. Perceptual spaces are commonly
constructed using non-metric MDS [Wills et al. 2009] which com-
putes an embedding based on relative similarity comparisons be-
tween stimuli pairs. The method is usually considered to be more
stable and reliable than standard MDS [Piovarči et al. 2016; Wills
et al. 2009] since it is based on a forced-choice experiment rather
than magnitude estimation. Usually, the dimensions of a perceptual
space can be correlated with physical properties which helps place
new samples in the space without additional experiments.

Perceptual spaces have been widely applied to analyze haptic per-
ception, e.g., roughness [Bergmann Tiest and Kappers 2006; Hollins
et al. 2000], compliance [Piovarči et al. 2016; Tiest and Kappers 2009],
and shape and texture [Cooke et al. 2006, 2010]. Beyond haptics,
the methodology has been applied to understand the perception
of reflectance properties, such as gloss [Pellacini et al. 2000; Wills
et al. 2009], translucency [Gkioulekas et al. 2013] and more intuitive
animation controls for artists [Sigal et al. 2015]. Our work com-
putes the perceptual space of digital drawing materials using the
non-metric MDS approach. To find the space, we adapt a likelihood-
maximization method [Silverstein and Farrell 2001] which was pro-
posed for scaling one-dimensional data. In contrast to previous work
which treats correlating the perceptual axes with physical properties
as separate step, we propose to modify multi-dimensional scaling

to jointly optimize for a perceptual space which both explains the
experimental data and correlates with a set of physical properties
of the drawing tools.

2.3 Digital Drawing Solutions
Over the years a variety of haptic devices have been proposed rang-
ing from Phantoms to tactile displays, each with different limitations.
Phantom devices [Massie et al. 1994] are capable of reproducing
multiple forces acting upon the human hand or finger at once. Since
a device handles all interactions, its limited force output leads to a
poor reproduction of solid surfaces. Tactile displays [Chouvardas
et al. 2005] aim at controlling properties of a surface when inspected
with fingertips. The approaches vary from stationary and wearable
pin-based displays [Hayward and Cruz-Hernandez 2000; Perez et al.
2017] to those that rely on micro-vibrations introduced to the sur-
face [Bau et al. 2010; Kim et al. 2013]. For a more in-depth overview
of these devices, please refer to Chouvardas et al.’s [2008] excellent
survey. In this work, we are concerned with reproduction of sensa-
tions generated by a surface in combination with a probe that, in
our case, mimics a drawing tool.

Commercial Solutions. Several commercial solutions directly ad-
dress the challenge of creating digital drawing tools which replicate
the sensation and experience provided by the traditional materials.
Products such as Microsoft’s Surface Pen, Wacom’s Intuos, and re-
Markable, offer nibs that are designed to replicate different drawing
materials. Despite these efforts, users notoriously report lack of
proper feel and dissimilarity to the traditional materials [Annett
et al. 2014]. Some products try to improve these technologies. The
PaperLike cover is a screen protector that significantly enhances the
interaction of a stylus with the tablet surface. Other products, such
as the Wacom Bamboo, focus on digitization by allowing users to
draw on paper atop a force sensitive tablet. iSkn provides a similar
solution, but applies an additional ring, attached to drawing tools,
to recover orientation. This enables simulation of more realistic
strokes. Although these solutions often provide good haptic expe-
rience, they do not offer the full range of the advantages of digital
drawing.

Research Prototypes. Researchers have sought to improve haptic
feedback of styli via active pens that are equipped with motors
for creating artificial vibrations [Arasan et al. 2013; Lee et al. 2004;
Poupyrev et al. 2004]. Researchers have also investigated additional
modalities of digital styli, e.g., pen bending [Fellion et al. 2017]
and specific hand grips [Song et al. 2011], to provide richer input
capabilities. In the context of drawing, Romano and Kuchenbecker
[2012] used the concept of active styli and proposed a fully data-
driven system where interactions are recorded via accelerometer,
and then, reproduced using a pair of vibrationmotors based on speed
and pressure data provided by the stylus. This system could recreate
the haptic sensation of a wide range of different surfaces. Similarly,
Cho et al. [2016] recorded several tools and designed a system for
replaying the feedback. Wang et al. [2016] proposed to replace an
active stylus with an active surface and use electrovibrations of the
drawing surface to control its friction properties. However, active
solutions require additional electronics which complicate the design,
restrict the usage of these devices, and introduce significant latency
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Fig. 2. Measurements and perceptual user study setup. Turntable on which a mechanical arm is used to capture friction and vibration of drawing tools. There
is a holder for a human arm (during user studies) to provide consistent grip and orientation. In the middle, we can see normalized friction measurements
recovered using our setup. On the right is the accelerometer response for a fixed velocity.

[Annett et al. 2014; Helps and Helps 2016]. Our system for designing
a passive stylus mitigates the problem of additional electronics and
provides instantaneous adaptation of feedback to changes in stylus
orientation and applied pressure.

2.4 Simulating Surface Interaction
Standard friction models generally begin with Coulomb’s model
[Harnoy et al. 2008] – an assumption of frictional resistance propor-
tional to normal load and in opposition to velocity. These assump-
tions are often reasonable for solid-to-solid frictional contact. In the
presence of lubrication, however, viscosity effects become important.
The Stribeck effect [Harnoy et al. 2008] describes frictional behavior
in lubricated contact. Initially, with increased speed, friction forces
drop. As speed is further increased the Stribeck model assumes an
increase in friction linearly proportional to speed. Frictional forces
can generate nonsmooth stick-slip behaviors. Karnopp et al. [1985]
model a regularized stick-slip behavior that removes nonsmooth-
ness from the Coulomb model, simplifying numerical integration. A
wide range of more complex frictional models [Armstrong-Hélouvry
1991; Canudas de Wit et al. 1995; Dahl 1976] are available and range
in suitability depending on modeling needs. Our particular prob-
lem, that of stylus-surface interaction is further complicated by the
effects of material wear [Stachowiak 2006], material deposition [Ar-
chard 1953] on the surface and the coupling between friction and
contact with elasticity and viscous damping [Chen et al. 2017]. Ap-
plying a standard frictional contact modeling is not sufficient to
obtain accurate numerical estimates of stylus behavior. Our simu-
lator builds on impulse-based frictional contact modeling [Mirtich
and Canny 1995]. This remains an active research area in simula-
tion [Bertails-Descoubes et al. 2011; Kaufman et al. 2005, 2008] and
many of the additional complicating factors described above are
not yet well understood in this context. To overcome this difficulty,
we opt for an exponential integrator [Hochbruck and Ostermann
2010; Michels et al. 2014] with a data-driven surface-interaction
model. In combination, our exponential integration gives us an an-
alytical solution to the linear elastodynamic equations of motion
while achieving excellent match with experimental data captured
during stylus-surface interaction.

3 PHYSICAL MEASUREMENTS
To study the feedback transferred from a drawing tool to a users
hand, we built a custom measurement device and used it to charac-
terize several traditional drawing tools.

3.1 Measuring setup
In our work, we follow observations from the literature (Section 2)
that haptic sensation is induced primarily via resistance and vibra-
tion generated by the tool-surface interaction. Consequently, our
device (Figure 2) measures resistance and vibration transferred to
fingertips while drawing. The base of the device is a turntable oper-
ated by a DC motor with controllable speed to which different types
of drawing substrate can be attached. To simulate an artist drawing
on a surface, we design an arm with an enclosure for various draw-
ing tools. By adding extra weight, the device can simulate different
pressures applied by a user. The vibration of a tool is measured by
an accelerometer attached to the enclosure, while the resistance is
captured by a force sensor placed on the arm.

3.2 Defining measurement parameters
The vibration and the resistance produced by a drawing tool depend
on its speed and the pressure applied. To reflect standard drawing
scenarios, we first performed a pilot study to determine these param-
eters. We invited four amateur artists to a short drawing session and
asked them to draw basic shapes [Garcia 2003] (Figure 3) using an
iSKN8 tablet. The participants used five different drawing materials:
ballpoint pen, soft (8B) and hard (2H) pencil, fine-liner, and charcoal,
on three different drawing surfaces: standard 80-gram office paper,
rough paper for pencil drawing, and smooth stone paper (Figure 4).
During each session, the velocity of the tool was recorded using
the positioning system of the tablet, while the pressure applied by
the participants was recorded by a force sensor mounted below the
tablet. To eliminate the effect of hand pressure, we placed a hand
rest next to the tablet. Figure 5 shows the histograms of recorded
velocities and forces. Based on the results, we decided to perform
further measurements of drawing tools using the mean force applied
by the artists, i.e., 2.2 N, and velocities between the 5th and 95th
percentile, i.e., 17-250 mm/s.

8https://www.iskn.co/

ACM Transactions on Graphics, Vol. 37, No. 4, Article 123. Publication date: August 2018.



Perception-Aware Modeling and Fabrication of Digital Drawing Tools • 123:5

Fig. 3. Sample images drawn during our preliminary user study.
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Fig. 4. Our user study considers 5 drawing tools: 2H and 8B pencils, fine-
liner, ballpoint pen, and charcoal and 3 drawing substrates: 80-gram office
paper, rough artist paper, and stone paper.
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Fig. 5. Velocity and pressure histograms recorded from free drawings during
our pilot study.

3.3 Measurements
Using our device, we measured each drawing tool and surface com-
bination from our preliminary study (Figure 4). The normalized
frictional force measurements (Figure 2, middle), revealed a small in-
teraction between velocity and the friction coefficient. Consequently,
we decided to use Coulomb friction to model measurements, and
denote a single frictional coefficient for drawing tool and particular
surface pairs. The recovered frictional coefficients range from 0.13
to 0.33. The vibration measurements (Figure 2, right) revealed a
broad-band characteristic with significant dependence on velocity.
We captured the complex vibration characteristic for each combi-
nation of tool and surface using a velocity dependent spectrogram

of vibratory response. For more details about the measurements as
well as all captured data please refer to supplementary material.

Since the goal of the experiment is to measure vibration caused by
tool-surface interaction, it is critical to assure that the measurement
device itself does not produce significant vibration. To measure the
vibration produced by our device, we experimented with a pen on an
oiled acrylic sheet. Figure 6 demonstrates vibration spectrograms for
the oiled surface and standard drawing paper. It can be observed that,
although very weak, there is a vibration produced by the system on
the oiled surface (due to the DCmotor) whichmanifests as a diagonal
line on the spectrogram. The weak horizontally structured signals,
since not velocity dependent, are most likely due to the remaining
interaction of the pen with the oiled surface. This is possible since
our base surface is not perfectly smooth, and some asperities exist
which actuate a drawing tool. We verified that the vibration caused
by the system does not affect the perception of the drawing tools in
an informal test during which the acrylic surface was perceived as
smooth and vibration-free. For more comparisons of measurements
on paper and oiled acrylic please see the supplementary material.
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Fig. 6. Measurements of a ballpoint pen on oiled acrylic (left), and 80-gram
office paper (right).

4 PERCEPTUAL SPACE OPTIMIZATION
In this section, we describe the method and experimental setup we
use to derive a perceptual space of drawing tools. We begin with
non-metric MDS [Wills et al. 2009] and extend the formulation to
automatically correlate the dimensions of the space with physical
properties.

4.1 Recovering the Perceptual Space
We adapt a Bayesian method developed by Silverstein and Farrell
[Silverstein and Farrell 2001] which translates the result of pairwise
comparison into scalar data. The advantage of this approach is that
it is robust to noise, missing data, and to cases when some of the
comparisons are not performed the same number of times.

The experimental data required for computing the space consists
of triplets of stimuli A, B, and C, with human judgments about which
of A and C is more similar to B. To find the space, we want to find po-
sitions of our stimuli in an n-dimensional space such that the proba-
bility of our experiment occurring is maximized. Under assumptions
of Thurstone Case V law of comparative judgment [Thurstone 1927],
the probability can be computed as:

Pexp =
∏
i jk

(
Ci jk +Cjik

Ci jk

)
P
Ci jk
i jk (1 − Pi jk )

Cjik , (1)

ACM Transactions on Graphics, Vol. 37, No. 4, Article 123. Publication date: August 2018.



123:6 • Michal Piovarči, David I. W. Levin, Danny M. Kaufman, and Piotr Didyk

where Pi jk is the expected percentage of subjects reporting that
the sample i is more similar to a reference k than sample j, and
Ci jk is the actual number of subjects that preferred sample i in
our experiment. The binomial represents the total number of ways
to pick Ci jk stimuli from a population of (Ci jk +Cjik ), while the
rest of the equation represents the probability of observing the
particular sequence of decisions in the experiment. To express the
probability Pi jk as the distances in the space we follow [Silverstein
and Farrell 2001] and use a cumulative normal function. To speed up
the evaluation of the function, we approximate it as [Vazquez-Leal
et al. 2012]:

Pi jk = 1 − exp
(
−10.38di jk + 111 arctan

(
0.09di jk

)
+ 1

)−1
(2)

di jk = | |Qi −Qk | | − | |Q j −Qk | |, (3)

where Qi , Q j , and Qk are locations of stimuli i , j, and k in the
perceptual space.

Typically, perceptual spaces are computed for only a fixed set of
stimuli, and positions of new stimuli are unknown. However, from
the application point of view, it is critical that new stimuli can be
easily embedded into the space without performing additional user
experiments. To solve the problem it is desirable that the axes of the
space are correlated with physical properties of the stimuli. Finding
a suitable definition of dimensions is usually a challenging task and
often done as an additional step after deriving the space. Instead,
we propose to jointly optimize for the embedding and correlation
with physical properties of the stimuli. The additional correlation
requirement can be expressed as maximizing:

Pcorr =
∏
d

(Corr [Qd ,Dd ]), (4)

whereQd is a vector ofd-th coordinates of pointsQ in the perceptual
space and Dd are physical properties we wish to correlate with Qd .
To compute a perceptual space, we combine Equations 2 and 4 to
formulate an optimization problem:

argmax
Q

Pexp · Pλcorr , (5)

where λ is driving the trade-off between good agreement with ex-
perimental data and good correlation with measurable properties
of the stimuli. In practice, to avoid very small values of the above
function we minimize its negative logarithm,

argmin
Q

− log(Pexp ) − λ log(Pcorr ). (6)

To resolve translational ambiguity, we constrain a single element
to the origin of our space. In contrast to standard, non-metric MDS
methods, our formulation does not have scale and rotational am-
biguity. Scale is constrained by Equation 2 relating probabilities
Pi jk with distances in the space, while rotation is handled by our
correlation term (Equation 4). Our full optimization problem is then
nonconvex [Silverstein and Farrell 2001]. To find a perceptual space
minimizing Equation 6, we apply a quasi-Newton solver [Avriel
2003] with multiple random starting points.

4.2 Experiment Design
To solve the above optimization, we must acquire an approximation
of probabilities Pi jk . Obtaining good estimates for all probabilities
requires an unfeasible amount of experimental data in terms of
number of experiments to perform. We therefore need to carefully
decide which stimuli triplets should be evaluated in order to obtain
a good estimation of the space. To this end, we make use of two ob-
servations: (1) evaluating triplets for which the outcome is expected
brings little information; and (2) due to the sigmoid characteristic of
the function relating distance in the space and probability (Equation
2), less obvious comparisons bring more reliable information to the
optimization. In a similar fashion to the “exploration-exploitation”
strategy from machine learning, this leads us to a two-stage proce-
dure. In the first exploration stage, subjects evaluate all triplets but
only with a few comparisons. Next, we identify the non-obvious
triplets and conduct a study with a larger number of comparison.
The final space is computed using Pi jk estimated from the data
obtained in both stages.

4.3 Experiment
Our experimental apparatus was an extended version of our mea-
surement device presented in Section 3. Besides the turntable on
which we can place different samples of drawing surfaces, we added
a support for the participants hands. To prevent visual feedback,
which could affect the similarity judgments, we installed a black
curtain that separated the participant from the turntable. Our ex-
perimental setup is demonstrated in Figure 7.

Fig. 7. Turntable setup for user studies. Participants’ hands rest in a holder
and an arm-wrap is used to limit wrist motion.

Stimuli. The stimuli consisted of 15 combinations of five draw-
ing tools and three different kinds of paper that were previously
measured (Section 3), which resulted in 1365 triplets. Half were
presented to the participants twice during the first stage of our
experiments. From this set of triplets, we selected 60 stimuli which
resulted in a tie and used them in the second stage where each of
themwas evaluated ten times. For the optimization of the perceptual
space we used all the triplets from the second stage and those that
did not result in a tie in the first stage.

Task. Each trial involved investigating and comparing three com-
binations of drawing tools and papers. During each trial, the partic-
ipants were asked to sit in front of our apparatus and to rest one
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of their hands on the support. Then, the instructor demonstrated
each of the three stimuli. This required changing the surface on the
turntable, sharpening the tools which undergo wear, and handing
the tools to the participants. Next, the subjects were asked to lower
the drawing tool until it reaches the surface. At this point, the in-
structor activated the turntable whichwas rotatingwith a previously
determined speed range from 17 up to 250 mm/s (Section 8). The full
period of the velocity change was 3 seconds which was sufficient to
appreciate the velocity-dependent effects while keeping the length
of the user-study short. The subjects were instructed which of the
stimuli were the reference and the tests, and then asked to identify
which of the two test stimuli was more similar to the reference. Be-
fore answering the question, the participants could investigate each
of the stimuli an unlimited number of times. To prevent any visual
and auditory feedback, the participants were asked to sit behind the
curtain and to wear noise-canceling headphones.

Participants. For the first stage of our experiment, we invited 34
participants (20-30 years old, M/F ratio 20/14). Each of them per-
formed an equal number of different randomly chosen comparisons.
For the second stage, we asked 10 new participants (20-30 years old,
M/F ratio 5/5) and each of them evaluated all 60 curated samples
that in the first stage resulted in a tie. Evaluation of one triplet took
on average 30 seconds, and the whole study took approximately
60 minutes due to the additional setup performed by the instructor.
Due to the length of the study, the participants were free to take a
break at any time or even split the study into multiple sessions. All
the participants received financial compensation.

4.4 Perceptual Space of Drawing Tools
When recovering a perceptual space from experimental data, it is
crucial to determine its dimensionality. On the one hand, higher
dimensionality allows for explaining experimental data better, but
on the other hand, it may lead to overfitting and more challenging
correlation with measurable properties of stimuli. Our formulation
explicitly tries to find a space that correlates well with physical
attributes, which is controlled by parameter λ. Here, we analyze the
trade-offs between different number of dimensions and different
choices of λ.

To design the perceptual descriptor of drawing tools, we use our
gathered measurements. As our first dimension we opted for the
Coulomb friction coefficient. Next, as a second descriptor we use
overall force of vibrations. Since human perception of vibrations is
a U-shaped function peaking at around 200-300 Hz. We account for
this nonlinearity by equalizing the vibrational force by human sen-
sitivity thresholds [Israr et al. 2006a]. For the 1D space we optimize
two times and separately correlate for friction and overall vibration
amplitude. For the 2D space we use friction and overall vibrational
power of the signal. Finally, for higher dimensional spaces we split
the vibration data into uniform bands based on dimensionality of
the space.

To determine the dimensionality of the space and a good value of
the parameter λ, we used the accurate estimations of probabilities
from the second stage of the experiment and compared them to the
predictions given by perceptual spaces computed using different
λ values and dimensionality. Figure 8 visualizes the mean match

error defined as the average error in prediction of pairwise distances.
We can observe an apparent gain in performance when using a 2D
space which quickly tapers and does not significantly improve with
higher dimensions. Based on this analysis, we decided to use a 2-
dimensional space. The best one correlates with frictional coefficient
and a mean value of vibration spectrogram, with a linear correlation
of 0.98 and 0.95 respectively.
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Fig. 8. The plot shows the match of our optimized perceptual spaces to
the experimental data. Different colors correspond to spaces of different
dimensionality, while points with the same color correspond to different
values of λ.

We present our recovered perceptual space of drawing tools in
Figure 9. As expected, it forms clusters of the same kind of drawing
tools, but also captures differences related to using different papers.
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Fig. 9. The perceptual space obtained using our data and optimization. The
axis are correlated with vibration and friction measurements. Confidence
intervals obtained by bootstrapping visualize 95% and 68% regions.

4.5 Accuracy
We performed two tests to further validate the accuracy of our space.
First, we performed 5-fold validation. We splited the data from the
second stage of our experiment into training and testing. Next, we
optimized for 2-dimensional spaces using only training sets and
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use the testing for validation. An average error was 17% which is
similar to the error obtained in our dimensionality test (Figure 8).

To test the reliability of our perceptual space, we computed con-
fidence intervals of tool placement using bootstrapping. We per-
formed random sampling of the experimental data and used the
re-sampled data to generate a new space which was then aligned
with our original perceptual space (Figure 9, points). We repeated
this procedure 1000 times and generated confidence intervals by
drawing ellipsoids that enclose 95% and 68% of points corresponding
to the same tool (Figure 9, ellipses). In most cases, the estimated
confidence intervals were smaller than the distances between the
individual tools. This suggests that the placement of the tools is
reliable. The differences in confidence intervals can be explained by
wear characteristics of different tools. For example, ballpoint pen
and multiliner are resistant to wear and do not change over time.
On the other hand pencils and charcoals get dulled by wear. This
results in change of tip size affecting the physical properties of the
tool, which introduces noise to human judgments.
We also validated our optimization and data selection approach

on synthetic data sets. To this end, we designed 100 synthetic tests.
Each of them consisted of a random perceptual space with a fixed
dimensionality, which we used to emulate our triplet selection pro-
cess and a user study in a Monte-Carlo fashion. Finally, we used
the synthetic data to recover the perceptual space. Figure 10 shows
the mean and standard deviation of the match between optimized
and ground-truth spaces for the various dimensionality of the ini-
tial data. The results demonstrate the the error introduced by our
optimization technique is smaller than the errors reported for our
space of drawing materials. In Section 6, we further demonstrate
that despite all the inaccuracies reported in this section, our space
can facilitate the process of designing drawing tools.
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Fig. 10. Synthetic results of optimizing perceptual spaces using our exper-
iment design as a function of space dimensionality. The bars show mean
error and standard deviation.

5 PHYSICAL SIMULATION
We now have a procedure to estimate the placement of a tool in our
perceptual space given a set of physical measurements. Generat-
ing these measurements from a physical setup is inconvenient so
instead we turn to physical simulation. A full contact simulation
of a drawing tool with paper micro-asperities is overly expensive
and many effects are still open problems in computational mod-
eling, (Section 2.4). These difficulties inspire us to take a partially
data-driven approach, wherein we model as much of the problem as

we can mathematically, using fitted models to fill in the gaps. Our
method is motivated by approaches in musical instrument simula-
tion [Blood 2009] in which the main resonator of an instrument is
simulated but the complex driving force (the mouthpiece) is tackled
in a data-driven fashion [Li et al. 2016]. More precisely, wemodel the
propagation of the vibration initiated at the tip of the tool using our
exponential Euler integrator, while the forces acting at the tip of the
tool are generated using our data-driven approach. The data-driven
forces encode the complex contact characteristic between the tool
and the surface.

5.1 Exponential Euler Integrator
Our goal is to simulate the vibrational behaviors of elastic geome-
tries in driven contact with rough surfaces. The tools and materials
we work with exhibit high stiffness, as reflected in their Young’s
moduli, and so are effectively modeled as linearly elastic using a
small deformation assumption. The equations of motion of such the
physical system is then:

MÜx(t) + DÛx(t) + Kx(t) + Λ(x(t)) = 0, (7)

where x(t) is the displacements at time t . M, D, and K, are the
mass, damping and stiffness matrices, respectively, and Λ(x(t)) is
the vector of external forces.
In this regime, we find using only the stiffness term of Rayleigh

damping model works well for our application, D = λK. In this case,
these equations admit an analytical solution given as

X(t) = e(t−t0)UX(t0) + e
tU

∫ t

t0
e−τUΓ(X(τ )) dτ , (8)

whereX is the stacked vector of system displacements and velocities,
U is the system matrix (see Appendix A) and Γ collects our external
forcing terms. This system can be used as the basis to build an
exponential integrator [Hochbruck and Ostermann 2010] as long as
a method for evaluating the forcing integral can be devised.

Our ability to perform predictive simulation of real-world draw-
ing tools hinges on the representation of the Γ forcing term in Equa-
tion 8 and our capacity to integrate it efficiently. In our setting this
term bundles a wide range of complex phenomena that drive the
drawing tool interaction behavior. The first of which are the oscilla-
tions induced by micro-scale surface contact. Given the structure of
our problem we adopt the spectral perspective and represent the
oscillatory driving force as a linear combination of sinusoidal terms
of varying phase. This, in turn, enables efficiency and flexibility in
simulation and modeling.
First, for a single sinusoidal forcing term we can construct an

exact integrator:

X(t + ∆t) =e∆tUX(t) + (Ω2 + U2)−1(

e∆tU(ΩA cos(ωt + ϕ) + UA sin(ωt) + ϕ) (9)
− ΩA cos(ω(t + ∆t) + ϕ)) − UA sin(ω(t + ∆t) + ϕ).

Here and in the following Ω designates an identity matrix scaled by
phase ω, A a diagonal matrix of per degree of freedom amplitudes,
and ϕ is the frequency shift.

Additionally, this representation also allows a set of solutions to
the single sinusoidal term problem to forms a linear basis that can
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be applied to represent any signal made up of a linear combination
of these sinusoids. Practically, we exploit this during design tasks
by precomputing a simulation basis for a drawing tool and then
synthesizing its interaction with new surfaces by summation of
these pre-simulated results. For more details about the derivation
please refer to Appendix A.

To validate our simulation and gather parameters for our method,
we run a test simulation. We 3D printed a bar on Objet260 printer
using VeroClear material. The bar was 210 × 20 × 2 mm and was
rounded at the end (radius 10mm) with a circular cutout of 5mm ra-
dius located 10mm from the end. The bar was clamped to a table on
a 30 mm section, preloaded to 5 cm and released. First, we captured
the bar’s oscillations using an attached accelerometer. Next, material
parameters (Young’s modulus and Rayleigh damping) were opti-
mized to fit our measurements. The recovered numerical Youngs
modulus was 0.45 GPa and the stiffness term of Rayleigh damp-
ing was 1.25e−3. Figure 11 demonstrates the excellent agreement
between simulation and experiment.
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Fig. 11. Oscilating 3D printed bar captured with accelerometer (blue) and
physical simulation of the bar (red).

5.2 Recovering the Forcing Signal
To predict the behavior of drawing tools we need to recover the
forces that are acting on the tool due to surface interaction. This
could be traditionally done by simulating the range of diverse phys-
ical behaviors acting on the tool, e.g., frictional stiction, stick-slip
behavior, viscous damping, wear, deposition and so forth. However,
this simulation strategy poses a number of modeling and perfor-
mance obstacles in our setting. Many of these effects are expensive
to simulate, while for others it is not at all clear that suitable models
exist to be simulated, irrespective of cost. We thus adopt a hybrid
data-driven approach to model the forces acting on the drawing
tool mediated by our exponential integrator derived above. We first
construct our data-driven forces below and then apply them to drive
our simulation.
We choose to model the surface forcing term as a linear combi-

nation of sinusoidal components that are scaled as a function of
both the compliance of the stylus tip material and the tip size itself.
Concretely we represent the surface in the frequency domain as
amplitudes of sinusoids from the range relevant to haptic feedback
(1-500 Hz) [Israr et al. 2006a], and scaling factors as piecewise cubic
Hermite polynomials with ten control points uniformly spaced at
50 Hz intervals.

We compute parameters for our model by solving the optimiza-
tion:

argmin
FS ∗tΨ∗mf

∑
Ψ

∑
S

������Inteдrator (Ψ, FS ∗ tΨ ∗mf ) −MΨ,S

������ , (10)

where Ψ is a shape and material combination, FS is forcing term
of surface S , tΨ , and mΨ are tip and material scaling parameters.
Here integrator is the Exponential Euler integrator we derive above.
The integrator takes as an input the assembled forcing term and re-
turns a simulated measurement. We minimize the L2 norm between
our simulation and the measured ground truthMΨ,S . The required
simulations can be quickly evaluated using our pre-simulated basis
results.
We printed, measured, and simulated a total of 27 tools with a

unitary forcing signal in the range of frequencies relevant to haptic
feedback (1-500 Hz). We then optimized this data with Equation 10
to acquire our final material forcing terms.
To validate the data-driven model we performed a leave one

out test of the recovered forcing term. One exemplar was removed
from the data set, our model was trained on the remaining samples
and then evaluated by fitting the test exemplar, (Figure 12). We
can see that we achieved good match with testing data. The main
discrepancies come from sharp peaks that are very challenging to
fully reproduce. For full evaluation please refer to the supplementary
material. Next, we also evaluated the effects of the scaling terms,
(Figure 13). The material scaling factor (Figure 13 left) is inversely
proportional to material softness. A soft material is predicted to
damp the vibrations of the tool. However, increased softness leads
to more pronounced stick-slip behavior which is then compensated
for by increasing the material scaling term. The effect of tip size
(Figure 13 right) is more subtle. In general large tip size leads to
more vibration damping. The scaling factors for tip size of 1 and 2
mm are very similar. This is caused by the wear experienced by the
material which sands down the finer tip quicker, therefore, making
them equivalent.
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Fig. 13. Material (left) and tip (right) scaling factor. Both factors were opti-
mized jointly.

Our simulations exhibit a minor mismatch in lower frequencies
around 25 Hz. This is caused by our choice of eleven evenly spaced
control points at 50 Hz intervals, which fails to reconstruct this
sharp jump. Our control point setup was chosen to avoid standard
issues with over-fitting of polynomial curves. For general simulation,
we would be interested in a precise match of the full spectra. Here,
however, the slight mismatches for low frequencies are not reflected
in user data as humans are less sensitive to vibrations in the low
range than to higher frequency vibrations where our simulator
matches experimental data well.
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Fig. 12. Fit of testing dataset at a fixed velocity. We compare physical measurements (blue) to our data-driven simulation (red). We can see a good match of
estimated vibration for the testing dataset.

5.3 Results
The purpose of the simulation is to predict the behavior of 3D printed
tools without physically manufacturing them. To evaluate the pre-
cision of our simulation we conducted a test in which we predicted
the vibratory response of an interpolated tool. We interpolated be-
tween two designs. The first design has a half-sphere tip of 4 mm in
diameter printed in DM85. The second design has a half-sphere tip
of 1 mm diameter and is printed in VeroClear. Both designs were
measured on standard office paper at various velocities (Figure 14
blue). The new tool has linearly interpolated material and tip param-
eters. To predict its behavior we used our full simulation pipeline.
First, we measured the response of the original designs to recover
tip and material scaling factors. Next, we used our exponential Euler
integrator to simulate the response of the interpolated tool. We used
forcing term we recovered for office paper modulated by linearly
interpolated material and tip scaling factors (Figure 14 red). We com-
pare our full simulation pipeline to a simulation where we would
not interpolate the material and tip parameters (Figure 14 gray). We
can see that our prediction matches reality well. The deviations can
be attributed to the general noisiness of vibrational measurements,
as well as, our printing process since we used dithering to generate
the interpolated material.
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Fig. 14. An interpolated design was measured (blue line) and simulated
using our pipeline (red line). We also compare to results of our simulation if
we would not interpolate tip and material scaling parameters (gray lines).

6 APPLICATION FOR DRAWING TOOL DESIGN
Finally, we demonstrate how our perceptual space and simulator
can be used to aid the process of designing digital drawing tools.

6.1 Perceptual Space Exploration
Because we correlate the dimensions of the perceptual space with
measurable properties of drawing tools, we can easily embed new
tools into the space and evaluate their pairwise similarities based on
their measurements or simulation. To demonstrate this, we extended
our previously derived space with several other drawing tools. We
considered four different categories. The first group consists of
our initial set of traditional drawing tools extended by two new
materials: a crayon and a felt-tip marker (Figure 15, red). The second
category is 3D-printed tools (Figure 15 green). They were fabricated
on a Stratasys Objet 260 Connex printer using different materials
ranging from VeroClear (low friction) to DM85 (high friction). The
tip size of the tools varied from 1 to 4mm. This category also includes
tools that were covered with a Teflon tape to lower the friction
further. All tools in the first and the second category were used
on our three different kinds of paper (Figure 4). The third group
consisted of the same 3D printed tools as in the previous category,
but this time they were used on two different artificial surfaces: glass
and glass with a screen protector (Figure 15 blue). This category
of drawing tools demonstrates what one can achieve with today’s
tablets and multi-material printing technologies. We also included
commercial solutions such as aWacomTablet Pen, Microsoft Surface
Pen, and Apple Pencil (Figure 15 yellow).
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Fig. 15. Perceptual space grouped by means of fabrication: real tools (red),
3D printed tools on paper (green), and artificial substrates (blue), and com-
mercial styli (yellow).
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To validate the accuracy of placing novel drawing tools into our
perceptual space, we conducted a user experiment.

Stimuli. We randomly chose seven new surface-tool combinations
that were not used for for the computation of the perceptual space.
They included four traditional drawing tools (a crayon on stone and
office paper, and felt-tip on note and stone paper), two 3D printed
tools (Teflon covered VeroClear on note paper and DM95 on office
paper), as well as two digital styli (Apple Pencil, and Wacom rubber
nib on glass). For each of the tools, we formed three triplets by
adding random tools as tests. In total, we obtained 24 stimuli.

Participants. 12 participants (20-30 years old, 7/5 M/F ratio) took
part in this experiment. Each of them was financially compensated.
Procedure. Participants evaluated each triplet by identifying the

test tool that was more similar to the reference. Similarly to our
original experiment, we avoided visual and auditory feedback but
allowed participants to draw with the tools freely. The participants
could also swap the tools as many times as they wanted and they
were given unlimited time for experimentation.

Results. We compared the results of the experiment with predic-
tions provided using our space. The prediction matched the popular
opinion in 19 out of 24 cases. Z-test revealed that our model pre-
dicts preference significantly better than random chance (p-value
< 0.0022). On average our prediction had an error of 19% and cor-
related to the experimental results with a Pearson correlation of
0.81 (p-value < 0.0001). This suggests a strong linear relationship
between our predictions and ground truth. The results support
our data validation (Section 4.5) and suggest that our methodology
translates well to freehand drawing. Figure 16 presents the detailed
results of the experiment.
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Fig. 16. The results of the free drawing user study. For each out 24 triplets, we
plot preference obtained in our validation experiment next to the prediction
coming from the perceptual space. The red background indicates the failure
cases where the majority vote did not agree with our prediction.

Our perceptual space can be used to draw several conclusions.
First, the group of commercial products overlaps to only a small
extent with traditional tools. Interestingly, our 3D-printed tools, on
artificial surfaces, extended the overlap, which suggests that there
is room to improve digital styli. The plot also reveals that digital
styli on the glass surface and the screen protector can achieve a
large variation in friction, which is almost sufficient to represent all
traditional drawing tools, but they lack correct vibratory feedback
which is currently limited to drawing implements such as an 8B
pencil on smooth stone paper. This suggests that the community
should explore the design of tablet covers which can provide this
missing cue.

6.2 Optimizing Digital Styluses
Finally, we leverage the ability of our perceptual space to estimate
similarities in haptic feedback and demonstrate the application of
our work to digital stylus fabrication. For this purpose, we consider
optimizing a stylus for two different surfaces: glass and a screen
protector, and validate our results in a user experiment.

Stimuli. In the first case, we considered a screen protector as our
artificial surface. On this protector, we measured two 3D-printed
styli, one in VeroClear with a tip diameter of 1 mm, and one in DM85
with a tip diameter of 4 mm. Figure 17 (left) shows their relation
to the real drawing tool in our space. One can see that neither of
them matches the real tool, and a better design can be achieved. We
used a line search powered by our simulation pipeline (Section 5)
to generate a design in between the two synthetic styli. For the
frictional coefficient, we used linear interpolation. The second case
consider an improvement of digital styli on a glass surface typical for
tablets. We measured the two 3D-printed designs from the previous
experiment. Figure 17 (right) shows the relative placement of the
real tool, commercial stylus, and our 3D printed tips. Once again
we use our simulation pipeline to design an interpolated stylus.

Participants. We invited 16 participants to investigate the case
with a screen protector and 12 for the glass surface. The partici-
pants were between 20-35 years old, and M/F ratio was 9/7. Each
participant was compensated for taking part in the study.

Procedure. Each participant was presented with all the digital
tools at once and asked to select one of them that is most similar to
the real tool that served as a reference. We decided not to limit visual
and auditory feedback, as the study consisted solely of artificial
materials so the bias from these cues should be minimal.

Results. For the case with the screen protector, 11 participants
selected our interpolated design, 4 the design printed in VeroClear
material, and 1 a design made of DM85 material. For the second
case, 10 out of 12 participants preferred our interpolated design and
2 preferred the VeroClear design. Chi-square goodness of fit showed
that there exists a significant difference in preference among the
groups of stimuli (p-values of < 0.018 and < 0.001). In a post-hoc
analysis a pairwise comparison using Z-tests with Holm-Bonferroni
correction revealed that the preference towards our designs is also
statistically significant (p-values of < 0.036 and < 0.008).
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Fig. 17. Details of our perceptual space for optimization of digital styli.
We show two cases: interpolation of 3D-printed styli on a plastic screen
protector (left), and interpolation of 3D-printed styli on the glass surface in
comparison to the Apple Pencil (right). Number indicate subject preference
when compared to real pencil.
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7 LIMITATIONS AND FUTURE WORK
Our perceptual model for drawing tools was designed under the
assumption that such tools exhibit isotropic behavior. While this
is a good assumption for a large group of commonly used tools
(pens, pencils, charcoals) there are cases when this assumption is
violated. For example, ink pens are designed to deposit material
only in specific drawing directions and only ride smoothly on the
surface in that direction. When used in the other direction, they
oppose the motion, creating a drastically different response. Another
limitation of our model, inherited from the tools themselves, is that
they manifest little variation in compliance. However, tools such as
brushes and brush pens are often used based on how compliant they
are. We also do not account for the wear of drawing materials. If a
tool is not always resharpened, the wear will eventually result in a
measurable and perceivable change in haptic behavior. In the future,
it would be interesting to account for anisotropies, compliance, and
wear, as well as to investigate what their impact on perception is.

Usually, perceptual spaces are scaled in just-noticeable-difference
units. This proved challenging in our case. The identification of
tools varies with experience. While a novice artist might have a
hard time distinguishing between various pencils, an expert could
readily tell the difference. Our perceptual space was created with
average users. We believe it still applies to more experienced users
regarding relative rather than absolute similarity predictions.

Our simulation has the limitations of a typical data-drivenmethod.
We cannot simulate tools that are vastly different from what we
measured and our approach only handles interaction with surfaces
for which the forcing term is known. Including new surfaces requires
additional measurements. The same is true for material scaling
factors and tip geometries, they have to be recovered for new tools
that can not be interpolated. Our applications also requires friction
information. We use simple linear interpolation to estimate it for
the newly interpolated tools. While such a simple solution proved
useful in our application, a more involved approach could be useful
to more precisely pinpoint the location of an interpolated material
in the perceptual space.
In our design, we did not consider durability constraints. There-

fore, some of our current designs exhibit wear and cannot be directly
used as commercial products. In the future, it would be interesting to
augment our perceptual design problem with additional constraints
such as durability or cost. Another interesting possibility is to design
tools which represent a certain group of real materials.

8 CONCLUSION
In this work, we have examined the problem of modeling and fab-
ricating digital styli that have the feel of real drawing tools. To
this end, we measured, analyzed, and characterized properties of
a representative set of traditional tools. We identified features that
influence perception and used them to derive a perceptual space
of drawing materials. This enabled the evaluation of perceived dif-
ferences between designs. Furthermore, we proposed a data-driven
simulation method that allows us to embed new tool designs into
the perceptual space without the need for fabricating them or con-
ducting expensive and time-consuming experiments. Finally, we

demonstrated that our approach can aid in the process of designing
new styli, and validated our results in user experiments.
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A EXPONENTIAL INTEGRATOR DERIVATIONS
In this section we will introduce derivation of our Exponential
integrator as well as proof of some important properties. We start
by deriving the general integrator from general equation of motion.
Next, we express the integrator for a sinusoidal forcing term. Finally,
we show that the results computed by our integrator can be arbitrary
rescaled and added together to create novel simulations.

A.1 Exponential Integrator Derivation
The equation of motion of a stiff elastic system under small defor-
mation assumption can be expressed as:

MÜx(t) + DÛx(t) + K(x(t) − x0) + Λ(x(t)) = 0,

which we can rewrite to solve for accelerations:

Üx(t) = −M−1DÛx(t) − M−1K(x(t) − x0) − M−1Λ(x(t)).

Now we reduce the system to a set of first order equation using the
substitutions

y1(t) = x(t), y2(t) = Ûx(t),

y′1(t) = Ûx(t) = y2,

y′2(t) = Üx(t) = −M−1DÛx(t) − M−1K(x(t) − x0) − M−1Λ(x(t)),

or more compactly in matrix form:[
Ûx(t)
Üx(t)

]
=

[
0 1

−M−1K −M−1D

] [
(x(t) − x0)

Ûx(t)

]
+

[
0

−M−1Λ(x(t))

]
.

Assuming Rayleigh damping we can express the damping matrix as
D = µM + λK:[
Ûx(t)
Üx(t)

]
=

[
0 1

−M−1K −M−1(µM + λK)

] [
(x(t) − x0)

Ûx(t)

]
+

[
0

−M−1Λ(x(t))

]
.

Using the substitution A = M−1K we arrive to the solution[
Ûx(t)
Üx(t)

]
=

[
0 1
−A −(µ + λA)

] [
(x(t) − x0)

Ûx(t)

]
+

[
0

−M−1Λ(x(t))

]
,

or in a more compact form:
ÛX = UX(t) + Γ(X(t)).

This equation has a known analytical solution

X(t) = e(t−t0)UX(t0) + e
tU

∫ t

t0
e−τUΓ(X(τ )) dτ , (11)

which is equivalent to its recursive form

X(t + ∆t) = e∆tUX(t) +

∫ t+∆t

t
e(t+∆t−τ )UΓ(X(τ )) dτ . (12)

A.2 Sinusoidal Forcing Term
Here we present the derivation of sinusoidal forcing term for recur-
sive exponential integrators (Equation 12) starting from rest state
that were used in this work. Analogous derivations can be done for
the non-recursive version of the integrator, as well as, for integrators
starting at a prestressed state. For clarity we will use the following
substitutions:

A = diag(α) Ω = diag(ω)

We start with the base recursive version of the equation:

X(t + ∆t) = e∆tUX(t) +

∫ t+∆t

t
e(t+∆t−τ )UΓ(X(τ )) dτ , (13)

where Γ(X (t)) = A sin(ωt+ϕ). We are interested in finding a solution
of the integral:

e(t+∆t )U
∫ t+∆t

t
e−τUA sin(ωτ + ϕ) dτ .

First we need to find a solution to the integral:∫ t+∆t

t
eτMA sin(ωτ + ϕ) dτ .

Using per partes substitution:

u = eτMA v ′ = sin(ωτ + ϕ)

u ′ = MeτMA v = −Ω−1 cos(ωτ + ϕ)∫ t+∆t

t
eτMA sin(ωτ+ϕ) dτ = a+

∫ t+∆t

t
MeτMAΩ−1 cos(ωτ+ϕ) dτ ,

where a = [−eτMAΩ−1 cos(ωτ +ϕ)]t+∆tt . Which we can reorder to:∫ t+∆t

t
eτMA sin(ωτ+ϕ) dτ = a+MΩ−1

∫ t+∆t

t
eτMA cos(ωτ+ϕ) dτ .

Now we can again apply per partes:

u = eτMA v ′ = cos(ωτ + ϕ)

u ′ = MeτMA v = Ω−1 sin(ωτ + ϕ)∫ t+∆t

t
eτMA sin(ωτ+ϕ) dτ = a+b−MΩ−1

∫ t+∆t

t
MeτMAΩ−1 sin(ωτ+ϕ) dτ ,

where b = MΩ−1[eτMAΩ−1 sin(ωτ + ϕ)]t+∆tt . Now we can reorder
again to get:∫ t+∆t

t
eτMA sin(ωτ+ϕ) dτ = a+b−M2Ω−2

∫ t+∆t

t
eτMA sin(ωτ+ϕ) dτ ,

To remove the inverse of Ω we multiply both sides by Ω2 from the
left. Note since this is a scaled identity matrix it holds the commu-
tative law and we can move it around as needed.

Ω2
∫ t+∆t

t
eτMA sin(ωτ+ϕ) dτ = Ω2a+Ω2b−M2

∫ t+∆t

t
eτMA sin(ωτ+ϕ) dτ

Now we subtract −M2 ∫ t+∆t
t eτMA sin(ωτ +ϕ) dτ , take the integral

in front of parenthesis:

(Ω2 +M2)

∫ t+∆t

t
eτMA sin(ωτ + ϕ) dτ = Ω2a + Ω2b .

And finally the solution is:∫ t+∆t

t
eτMA sin(ωτ + ϕ) dτ = (Ω2 +M2)−1(Ω2a + Ω2b),

which expands to:∫ t+∆t

t
eτMA sin(ωτ + ϕ) dτ =(Ω2 +M2)−1(

Ω2[−eτMAΩ−1 cos(ωτ + ϕ)]t+∆tt

+ Ω2MΩ−1[eτMAΩ−1 sin(ωτ + ϕ)]t+∆tt ).
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Which finally expands to:∫ t+∆t

t
eτMA sin(ωτ + ϕ) dτ =(Ω2 +M2)−1(

ΩetMA cos(ωt + ϕ)

− Ωe(t+∆t )MA cos(ω(t + ∆t) + ϕ)

+Me(t+∆t )MA sin(ω(t + ∆t) + ϕ)

−MetMA sin(ωt + ϕ)).

We can take the common term etM in front of parenthesis:∫ t+∆t

t
eτMA sin(ωτ + ϕ) dτ =(Ω2 +M2)−1(etM )(

ΩA cos(ωt + ϕ)

− Ωe∆tMA cos(ω(t + ∆t) + ϕ)

+Me∆tMA sin(ω(t + ∆t) + ϕ)
−MA sin(ωt + ϕ)).

Now we can plug it back to Equation 13 with the substitution of
M = −U.

X (t + ∆t) =e∆tUX(t) + e(t+∆t )U(Ω2 + U2)−1(e−tU)(

ΩA cos(ωt + ϕ)

− Ωe−∆tUA cos(ω(t + ∆t) + ϕ)
UA sin(ωt + ϕ)

− Ue−∆tUA sin(ω(t + ∆t) + ϕ)).

The factor e(t+∆t )U could have been stored in the integral and there-
fore it can be moved inside the parenthesis:

X (t + ∆t) =e∆tUX(t) + (Ω2 + U2)−1(e(t+∆t )Ue−tU)(

ΩA cos(ωt + ϕ)

− Ωe−∆tUA cos(ω(t + ∆t) + ϕ)
UA sin(ωt + ϕ)

− Ue−∆tUA sin(ω(t + ∆t) + ϕ)).

After simplifying we get to the final solution:

X (t + ∆t) =e∆tUX(t) + (Ω2 + U2)−1(

e∆tU(ΩA cos(ωt + ϕ) + UA sin(ωt + ϕ))
− ΩA cos(ω(t + ∆t) + ϕ) − UA sin(ω(t + ∆t) + ϕ)).

A.3 Analytical Acceleration
The exponential integrator solves for displacements and velocities.
Since we would like to get accelerations we need to calculate the
first derivative of the solution:

X (t) = etU
∫ t

0
e−τUΓ(X (τ )) dτ (14)

We start by applying the derivative product rule:

X ′(t) = (etU)′
∫ t

0
e−τUΓ(X (τ )) dτ + etU

(∫ t

0
e−τUΓ(X (τ )) dτ

) ′
,

X ′(t) = UetU
∫ t

0
e−τUΓ(X (τ )) dτ + etU

(∫ t

0
e−τUΓ(X (τ )) dτ

) ′
.

Now we use the property of definitive integrals:(∫ b

0
f (x) dx

) ′
= (F (b) − F (0))′ = F ′(b) − 0 = (b)′ f (b) = f (b),

and we get that:

X ′(t) = UetU
∫ t

0
e−τUΓ(X (τ )) dτ + etUe−tUΓ(X (t))

X ′(t) = UetU
∫ t

0
e−τUΓ(X (τ )) dτ + Γ(X (t)).

In our case of sinusoidal forces the integral has already known
solution from Equation 14:

X ′(t) = UX (t) +A sin(ωt + ϕ)

A.4 Summation of Exponential Integrators
An interesting property of exponential integrators is that the contri-
bution of each individual forcing term can be evaluated separately
and then combined to form the final result. This property can be
shown as follows.

X (t) = etU
∫ t

0
e−τU

∑
i

Γi (X (τ )) dτ

X (t) = etU
∑
i

∫ t

0
e−τUΓi (X (τ )) dτ

X (t) =
∑
i
etU

∫ t

0
e−τUΓi (X (τ )) dτ

A.5 Multiplying Forces by a Constant
Another interesting property of the exponential integrator is that
the effect of a forcing term can be arbitrarily scaled which allows
to compute the effect of each forcing term for a unitary force and
then scale the result appropriately. The proof of this property comes
properties of the integral:

Xk (t) = etU
∫ t

0
e−τUkΓ(X (τ )) dτ

Xk (t) = ke
tU

∫ t

0
e−τUΓ(X (τ )) dτ

Xk (t) = kX (t)
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